• 제목/요약/키워드: Part deformation

검색결과 919건 처리시간 0.027초

블록 리프팅 후 갑판 교정가열의 잔존 효율 연구 (A Study for Remained Efficiency of Correction Heating after Block Lifting)

  • 하윤석;원석희;이명수
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.118-125
    • /
    • 2008
  • The deck plates of ship block is made of thin plates in their construction. A main reason of using thin plates is that deck plates don't need to support large structural loads. Therefore, out-of-plane deformations between stiffeners are frequent in deck blocks. Because these are got right by correction heating, they continuously causes quality problems in the final dock-building process. According to preceding research, the lifting process by cranes would offset the effect of correction heating. This study finds out the remained efficiency of correction heating when tensional loads are added by a lifting to corrected parts. We used inherent strains in calculating the efficiency, and established the methodology where the positions for callings are. For getting more accurate positions, besides the structural lifting analysis, welding deformation analysis with upper block and measured data from a serial ship are also referenced.

  • PDF

결합강그리드보강재의 특성 및 적용 (Charateristics of the Jointed Steel-Grid Reinforcement and the Application)

  • 한중근
    • 한국환경복원기술학회지
    • /
    • 제5권3호
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

공작기계 장시간 가공중 열변형의 CNC 자율보정 기술 (Autonomous Compensation of Thermal Deformation during Long-Time Machining Process)

  • 김동훈;송준엽
    • 한국정밀공학회지
    • /
    • 제31권4호
    • /
    • pp.297-301
    • /
    • 2014
  • The biggest factors, which lower the machining accuracy of machine, are thermal deformation and chatter vibration. In this article, we introduce the development case of a device and technology that can automatically compensate thermal deformation errors of machine during long-time processing on the machine tool's CNC (Computerized Numerical Controller) in real time. In machine processing, the data acquisition of temperature signal in real time and auto-compensation of the machine origin of machine tools depending on thermal deformation have significant influence on improving the machining accuracy and the rate of operation. Thus, we attempts to introduce the related contents of the development we have made in this article : The development of a device that embedded the acquisition part of temperature data, linear regression to get compensation value, compensation model of neural network and a system that compensates the machine origin of machine tool automatically during manufacturing process on the CNC.

단속 필렛 용접의 변형 특성에 관한 연구 (Deformation Characteristics of Intermittent Fillet Welding)

  • 이주성
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.105-109
    • /
    • 2011
  • As is well appreciated, welding is the most important fundamental process in manufacturing marine structures. However, weld-induced deformation is inevitable because of the non-uniform distribution of temperature during welding. The deformation caused by welding is one of the principal obstacles in enhancing the productivity in the manufacturing procedure for marine structures. This should be much more seriously considered in the case of the thin blocks found in a ship with multi-deck structures. This paper is concerned with the deformation control of thin panel blocks by applying intermittent welding to fillet welding. In order to investigate the quantitative effect of the intermittent welding, a thermo elasto-plastic analysis was carried out with various welding pitches and plate thicknesses. Welding tests were also carried out to show the validity of the present thermo-elasto-plastic analysis. Numerical analysis results showed good agreement with those of the welding tests. As far as the present numerical results are concerned, it has been seen that a more than 50% reduction in angular distortion can be achieved by applying the intermittent welding because of the low heat input.

완충재 장기처짐과 ISO 20392 대응 연구 (Correspondence Research of Long-term Compressive Creep of Resilient Materials and ISO 20392)

  • 김경우;연준오;양관섭
    • 한국소음진동공학회논문집
    • /
    • 제22권12호
    • /
    • pp.1250-1256
    • /
    • 2012
  • Resilient materials are used to reduce the floor impact sound in apartment buildings. Since an on-dol layer is installed in the resilient materials' upper part, thickness deformation can be occur in the resilient material. It is necessary to check a thickness deformation grade for a long period of time. In this research, we measured thickness deformation over 400th day to the resilient materials(EPP, EPS, EVA) which is used in Korea. Although there was a difference according to the kind of measurement test specimens, it became clear that thickness was decreases as to time increased. The thickness deformation grade of ten years after was calculated based on the thickness measurement result. Compare with the calculated result and result of ISO 20392. Larger thickness deformation occurred in the measurement result of these research findings compare with the ISO standard.

범용 구조해석 프로그램의 주물 열변형 해석에의 적용성 (Application of Commercial FEM Code to Coupled Analysis of Casting Deformation)

  • 김기영;김정태;최정길
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.192-199
    • /
    • 2002
  • Dimensional defects of castings are mainly due to the stresses and strains caused by a nonuniform temperature distribution and phase transformation during solidification and cooling, and by mechanical constraint between the mold and casting. It is, however, nearly impossible to trace movements of the casting and mold during solidification and cooling by experimental measurements for castings with complex shape. Two and three dimensional deformation analyses of the casting and the mold were performed using commercial finite element code, MARC. It was possible to calculate deformation and temperature distribution in the casting and mold simultaneously. Cooling curves of the casting obtained by calculation were close to that measured in the field since it was possible to treat latent heat evolution of the casting which could be divided into two parts, primary and eutectic parts. Mold bent inward just after pouring due to the temperature gradient across the mold thickness, and mold returned to its previous position with time. Plastic deformation occurred at the part of the casting where solidification was slow.

On the optimum performance-based design of eccentrically braced frames

  • Mohammadi, Reza Karami;Sharghi, Amir Hossein
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.357-374
    • /
    • 2014
  • The design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of eccentrically braced steel frames, based on the concept of uniform deformation theory (UDT). This is done by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In the first part of this paper, UDT is implemented on 3, 5 and 10 story eccentrically braced frames (EBF) subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared with four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures while having minimum structural weight. For further investigation, the 10 story EBF is redesigned using four different loading patterns and subjected to 12 earthquake excitations. Then a comparison is made between link rotations of each model and those belonging to the optimized one which revealed that the optimized EBF behaves generally better than those designed by other loading patterns. Finally, efficiency of each loading pattern is evaluated and the best one is determined.

Impact deformation of Feldspar in Achondrite: NWA 2727, NWA 3117, NWA 856 Meteorite

  • LEE, Jaeyong;FAGAN, Timothy J.
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.73.1-73.1
    • /
    • 2018
  • We investigated shock history of three achondrite meteorites: NWA 3117, a howardite from asteroid Vesta, NWA 2727, a breccia from the Moon, and NWA 856, a shergottite from Mars. Shock histories were evaluated from deformation of plagioclase feldspars. Feldspar grains were classified based on observations in cross-polarized light as undulatory, mosaic, mosaic-recrystallized or maskelynite. This sequence represents increasing deformation of original feldspar crystals. Undulatory crystals have wavy extinction, mosaic crystals have patchy extinction, and mosaic-recrystallized grains appear as if they were originally coarse-grained and have recrystallized to mosaics of small equant crystals. Maskelynite grains are isotropic, indicating transformation to glass. Based on feldspar deformation, the degrees of impact processing are NWA 856 > NWA 3117 > NWA 2727. The high deformation of NWA 856 is expected because this sample is from Mars, which is a large parent body and requires a powerful impact to accelerate a rock to escape velocity. In contrast, the parent body of NWA 3117 (Vesta) is smaller than that of NWA 2727 (the Moon), yet NWA 3117 appears more highly deformed than NWA 2727. One possible explanation is that NWA 2727 is from a relatively young part of the Moon, which has not been exposed to impacts as long as the surface of Vesta.

  • PDF

변형 및 복원공정에 따른 실린더 형상 구조물의 응력분포 특성 (Evaluation of Characteristics for Stress Distribution on Cylindrical Beam Structure by Deformation and Restoration Process)

  • 박치용;김진원;부명환
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.132-138
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore damaged part of large machinery and structure which is installed in the hazard working place. In this paper, to estimate stress distribution which occurs during damage and restoration of cylindrical beam structure, the finite element technique has been used. A finite element model was verified by experiment for non deformed cylindrical beam structure. The displacements and elastic recovery have an excellent agreement between experiment and finite element analysis. The variations of stress distribution on deformation and restoration procedure for surfaces have been examined. The maximum von Mises stress appears in the surface for deformation and restoration procedure. In deformation procedure, the maximum stress occurs in the vicinity of support body. In restoration procedure, the maximum stress occurs in the vicinity of the fixing body. The fixing body allows avoiding stress concentration in adjacent support structure boundary.

판형 부품의 밀링 가공에 의한 변형 최소화에 대한 연구 (A study on the minimization of deformation by milling of plate-shaped parts)

  • 이민구;윤재웅
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.32-38
    • /
    • 2021
  • Plate-shaped works are one of the materials that can be applied to the entire industry due to their various shapes and sizes. Plate-shaped parts workpieces are thin and wide, and when processing is completed, they are often bent or deformed in various directions, making it difficult to produce normal products. In particular, this study intends to study the processing deformation and distortion of plate-shaped parts fastened to the jig during milling processing. In this study, a method for preventing deformation occurring in plate-shaped parts was derived through jig element change and CAE analysis, and this was applied to actual processing to produce products with stable dimensions. Through a finite element analysis experiment, it was found that installing two supports on the back of the plate-shaped part results in minimal deformation and the optimal distance between the two supports is 150 mm. Through this experiment, when processing a thin plate product, a support was installed in a direction opposite to the cutting force applied to the thin plate to prevent deformation of the product, thereby improving defects.