• Title/Summary/Keyword: Pars Intercerebralis

Search Result 7, Processing Time 0.018 seconds

Ultrastructural studies on the neurosecretory cells in the pars intercerebralis of larvae of tasar silkworm, Antheraea mylitta (D) eco-race Bhandara (Lepidoptera: Saturniidae)

  • Barsagade, Deepak Dewaji;Gharade, Shruti Arvind
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.1
    • /
    • pp.120-127
    • /
    • 2014
  • The cerebral neurosecretory cells (NSC) constitute four paired groups, medial (MNC), lateral (LNC-I, LNC-II) and posterior (PNC) in the brain of larvae of tasar silkworm Antheraea mylitta (D) Eco-race Bhandara. The MNC is the largest groups of peptidergic neurosecretory cells and are located in the pars intercerebralis region. The transmission electron microscopic (TEM), ultrastructure of the NSC confirmed the presence of mitochondria, endoplasmic reticulum, Golgi bodies, lysosomes and neurosecretory granules. The median neurosecretory cells shows secretory activity and release of secretory products, the neurosecretory granules (NSG) in the axons of NSC as well as the blood sinus.

Ultrastructure of Nerve Cells in the Pars Intercerebralis of Cabbage Butterfly Pieris rapae L. (배추흰나비 (Pieris rapae L.) 뇌간부(腦間部)의 신경세포(神經細胞)에 대한 미세구조(微細構造))

  • Lee, B.H.;Kim, W.K.
    • Applied Microscopy
    • /
    • v.12 no.2
    • /
    • pp.55-68
    • /
    • 1982
  • The study on the nerve cells in the pars intercerebralis(IP) of 5-day-old cabbage butterfly Pieris rapae L. was performed to observe their ultrastructures and classify them on the basis. of the differences in size, shape and relative distribution cf cell organelles. The brain-subesophageal ganglion complex was fixed in 1% paraformaldehyde-1% gluaraldehyde mixture and embedded in araldite mixture. The transverse thin sections of IP were stained with uranyl acetate and lead citrate and examined by Hitachi 500 and ]EM 100B electron microscope. Five distinct types. of nerve cells are recognized and are arbitrarily designated as Type I, Type II Type III, Type IV and Type V. Type I neurone: These neurones are neurosecretory cells. Several neurosecretory cells are. recognized in the pars intercerebralis. They are roughly round or peach-shaped cells measuring $13{\sim}25{\mu}m$ in diameter. The rounded nucleus shows about $5{\sim}10{\mu}m$ in diameter. The chromatin is predominantly diffused with only occasional dense patches. The perikaryon contains numerous. mitochondria, free polyribosomes and neurosecretory granules. The neurosecretory granules are relatively uniform in electron density, and each one is about $100{\sim}400{\mu}m$ in diameter and surrounded by a single membrane. The granules are also observed mostly as in groups. In one group of neurones the cisternae of endoplasmic reticulum are distended or in other group of neurones are not distended. Golgi saccules are slightly dilated at their lateral extremities and contains. frequenty dense rounded materials. Type II neurone: Thes have the largest soma in the pars intercerebralis about $30{\sim}35{\mu}m$ in diameter. They also show roughly polygonal in shape. The nucleus is elongated or sickle-shaped. The chromatin is mainly in the euchromatin form. The perikarya in these cells are well populated with populated with free ribosomes and contain numerous mitochondria and Golgi bodies. The cisternae of granular endoplasmic reticulum are also well distributed. Type III neurone: They are oval or spindle-shaped and also medium-sized. neurones approximately $15{\sim}17{\mu}m$ in length. The nucleus is oval or slightly elongated in shape and $8{\sim}9{\mu}m$ in length. The chromatin occurs in diffused form. The cytoplasm contains many filamentous or oval mitochondria. The perikaryon has also numerous free polyribosomes and cisternae of granular endoplasmic reticulum. Type VI neurone: They are roughly polygonal in shape probably due to the close approximation of the adjacent cells. The soma is about $7{\sim}8{\mu}m$ in diameter. The nucleus is round or oval in shape and $5.0{\sim}5.8{\mu}m$ in diameter. The necleus also occupies a large proprion of the cell body. The perikaryon is well populated with free ribosomes and contains several mitochondria and cistenae of granular endoplasmic reticulum. Type V neurone: These neurones are similar to Type VI neurones in various respects such as cell size and cell inclusion, but they differ from Type IV neurones in shape. The soma is oval or slightly elongated. The cell body contains several filamentous and oval mitochondria.

  • PDF

SIFamide and SIFamide Receptor Define a Novel Neuropeptide Signaling to Promote Sleep in Drosophila

  • Park, Sangjin;Sonn, Jun Young;Oh, Yangkyun;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.295-301
    • /
    • 2014
  • SIFamide receptor (SIFR) is a Drosophila G protein-coupled receptor for the neuropeptide SIFamide (SIFa). Although the sequence and spatial expression of SIFa are evolutionarily conserved among insect species, the physiological function of SIFa/SIFR signaling remains elusive. Here, we provide genetic evidence that SIFa and SIFR promote sleep in Drosophila. Either genetic ablation of SIFa-expressing neurons in the pars intercerebralis (PI) or pan-neuronal depletion of SIFa expression shortened baseline sleep and reduced sleep-bout length, suggesting that it caused sleep fragmentation. Consistently, RNA interference-mediated knockdown of SIFR expression caused short sleep phenotypes as observed in SIFa-ablated or depleted flies. Using a panel of neuron-specific Gal4 drivers, we further mapped SIFR effects to subsets of PI neurons. Taken together, these results reveal a novel physiological role of the neuropeptide SIFa/SIFR pathway to regulate sleep through sleep-promoting neural circuits in the PI of adult fly brains.

Postembryonic Development of Leucokinin I-Producing Neurons in the Brain of Insect Spldoptera litura

  • Kang, Hyu-No;Lee, Bong-Hee
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.107-113
    • /
    • 1997
  • Antisera against the myotropic neuropeptide leucokinin I, originally isolated from head extracts of the cockroach Leucophaea maderae, have been used to investigate the distribution of the leucokinin I-immunoreactive (LK I-IR) neurons in the brain of the common cutworm, Spodoptera Iitura, during postembryonic development. The LK I-IR neurons are found at the larval stages (excluding first instar larval stage), pupal stages, and adult stage, of which the brains have been examined in this experiment. The number of the LK I-IR neurons in the brain increases from the second instar larva to the fifth instar larva which has about 32, the largest number in all postembryonic stages. Thereafter, the LK I-IR neurons begin to decrease in number. During the pupal stages, smaller number of LK I-IR neurons persist in the brains; 6 or 4. At adult stage the brain contains 8 LK I-IR neurons. The LK I-IR cell bodies are distributed in each dorsal cortex of both cerebral hemispheres in the second instar larva and through all the neuromeres of the brain during later larval stages, despite of being a large number of the LK I-IR cell bodies in dorsolateral neuromeres. At pupal stages, most of the LK I-IR cell bodies are found in the pars intercerebralis. Extremely small number of the LK I-IR cell bodies are localized in the pars lateral is. Adult brain contains the LK I-IR cell bodies in the pars intercerebralis and the middle cortex of the posterior brain. The LK I-IR nerve processes can be easily found in the neuropils of almost all the neuromeres in the brains of third, fourth, fifth and sixth instar larvae. Most of the LK I-IR nerve fibers in those brains are originated from the LK I-IR cell bodies located in the brains. The LK I-IR cell bodies which have very weak reactivities to the antisera do not show projection of the LK I-IR nerve processes in the brains.

  • PDF

Metamorphic Changes of the Neurosecretory Cells in the Brains of Wax Moth Gafferfa mellonella during Metamorphosis (꿀벌부채명나방 뇌신경분비세포의 변태에 따른 변화)

  • 이봉희;강성훈;김민영;김우갑
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.120-133
    • /
    • 1989
  • The paraidehyde-fuchsin(PAE)-positive neurosecretory cells in the brains of wax moth Galleria mellonella have been morphologically examined at the six different metamorphic stages. During the metamorphosis, neurosecretory cells in the brain can be found in the five unclei of pars intercerebralis, lateral region of protocerebrum, optic lobe, deutocrebrum and tritocerebrum. The five nuelel include one to seven neurosecretory cells. On the bases of cell sizes and histochemical specificities of neurosercretion within cells, all the PAF-positive neurosercretory cells included in the six different metamorphic brains can be recognized as four species of neurosecretory cells as follows; (1) large (about 25 $\mu$m), neurosecretion-parcked cell (type I neurosecretory cell), (2) large, granule-dispersed cell (type II neurosecretury cell), (3) small (about 15 $\mu$m), neurosecretion-packed cell (type III neurosecretory cell), and (4) small, granule-dispersed cell (type IV neurose-cretory cell). The three tb seven medial neurosecretory cells are included in the pars intercerebralis of the six different metamorphic brains. With the increase of days from the late larva to the adult the type I cells of medial neurosecretory cells gradually decrease in number, but the respective three type II neurosecretory cells appear in the five different metamorphic brains except in pupa 2 day before the emeregnce of the adult which has only one type II. The one to five lateral neurosecretory cells are observed in the lateral region of protocerebrum from thepupa just after pupation to the adult. The type IV neurosecretory cells are the most in number of lateral neurosecretory cells. The one type Ineurosecretory cells are included near the optic lobe of only the 4-day-old pupa. the one deutocerebral neurosecretory cell, type II, appears only in the adult. The tritocerebrum includes both three neurosecretory cells in the late larva and one neuresecretory cell in the adult. In the late larva the two tritocerebral neurosecretory cells are type Ill neurosecretory cell and the one is type IV. The remaining one tritocerebral neurosecretory cell is type IV.

  • PDF

Postembryonic Changes of Locustatachykinin I-immunoreactive Neurons in the Brains of the Moth Spodoptera litura

  • Kang, Hyun-O;Lee, Jeong-Oon;Lee, Bong-Hee
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.475-482
    • /
    • 1997
  • The antiserum against locustatachykinin I, originally isolated from brain and retrocerebral complex of the locust Locusta migratoria, has been used to investigate changes in number, localization, and structure of locustatachykinin I-immunoreactive (LomTK I-IR) neurons in the brains of the common cutworm, Spodoptera Iitura, during postembryonic development. These neurons are found at larval, pupal, and adult stages. In the larval stages, the first instar larva shows the first appearance of about 8 LomTK I-IR neurons. These neurons gradually increase in number from the second to fourth instar larvae which have the largest number of about 92 in all postembryonic stages. Thereafter, these neurons decrease to about 28 in number in the 5-day-old pupa. However, they begin to rise again from the 7-day-old pupal stage, eventually reaching to about 90 in the l-day-old adult. The developing larval brains contain cell bodies of these neurons in most neuromeres. After the metamorphosis of larva to pupa and adult, localization of these neuronal cell bodies is confined to the specific cerebral neuromeres. The 7-day-old pupal brain shows the location of these neuronal cell bodies in pars intercerebralis, pars lateralis of protocerebrum, deutocerebrum, tritocerebrum, optic lobe-near region, and subesophageal ganglion. In the l-day-old adult, however, the brain has these cell bodies only in some neuromeres of protocerebrum, deutocerebrum, and subesophageal ganglion. Throughout the postembryonic life, changes in structure of these neurons coincide with changes in number and localization of these neurons. These findings suggest that changes in number, localization, and structure of these neurons reflect differentiation of these neurons to adult type.

  • PDF

Immunolocalization of Allatotropin Neuropeptide in the Developing Brain of the Silk Moth Bombyx mori

  • Park, Cheolin;Lee, Bong-Hee
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.211-216
    • /
    • 2001
  • Polyclonal antiserum against Manduca sexta allatotropin has been utilized to investigate the localization of allatotropin-immunoreactivity in the brain of the si1k moth Bombyx mori. Manduca sexta allatotropin-immunoreactive (Mas-AT-IR) neurons were found in all larval brains investigated, but not in prepupal, pupal and adult brains. In the larval stages, first appearance of Mas-AT-immunoreactivity w8s shown in the brain of first instar larvae, which contains four pairs of bilateral Mas-AT-IR cell bodies. Labeled neurons increased to six pairs in the second instar larval brain, including two pairs of median neurosecretory cells in the pars intercerebralis. In the third and fourth instar larvae, five pairs of labeled cell bodies were distributed throughout each brain. In the fifth instar, there were about ten pairs of bilateral cell bodies in the day-1 brain, about seven pairs in the day-3 brains, and five pairs in the day-5 brains, respectively. Mas-AT-labeling was observed in both axons within nervi corpora cavdiaci (NCC) 1+11 and corpora allata. This suggests that the Mas-AT produced from the brain neurons is transported via some axons of the NCC 1+11 and nervi corpora allati I to the corpora allata, which appears to be a main accumulation site for the Mas-AT neuropeptide in some brain neurons produced in B. mori.

  • PDF