• Title/Summary/Keyword: Parkinson's disease model

Search Result 132, Processing Time 0.024 seconds

5-Hydroxytryptophan Reduces Levodopa-Induced Dyskinesia via Regulating AKT/mTOR/S6K and CREB/ΔFosB Signals in a Mouse Model of Parkinson's Disease

  • Yujin Choi;Eugene Huh;Seungmin Lee;Jin Hee Kim;Myoung Gyu Park;Seung-Yong Seo;Sun Yeou Kim;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.402-410
    • /
    • 2023
  • Long-term administration of levodopa (L-DOPA) to patients with Parkinson's disease (PD) commonly results in involuntary dyskinetic movements, as is known for L-DOPA-induced dyskinesia (LID). 5-Hydroxytryptophan (5-HTP) has recently been shown to alleviate LID; however, no biochemical alterations to aberrant excitatory conditions have been revealed yet. In the present study, we aimed to confirm its anti-dyskinetic effect and to discover the unknown molecular mechanisms of action of 5-HTP in LID. We made an LID-induced mouse model through chronic L-DOPA treatment to 6-hydroxydopamine-induced hemi-parkinsonian mice and then administered 5-HTP 60 mg/kg for 15 days orally to LID-induced mice. In addition, we performed behavioral tests and analyzed the histological alterations in the lesioned part of the striatum (ST). Our results showed that 5-HTP significantly suppressed all types of dyskinetic movements (axial, limb, orolingual and locomotive) and its effects were similar to those of amantadine, the only approved drug by Food and Drug Administration. Moreover, 5-HTP did not affect the efficacy of L-DOPA on PD motor manifestations. From a molecular perspective, 5-HTP treatment significantly decreased phosphorylated CREB and ΔFosB expression, commonly known as downstream factors, increased in LID conditions. Furthermore, we found that the effects of 5-HTP were not mediated by dopamine1 receptor (D1)/DARPP32/ERK signaling, but regulated by AKT/mTOR/S6K signaling, which showed different mechanisms with amantadine in the denervated ST. Taken together, 5-HTP alleviates LID by regulating the hyperactivated striatal AKT/mTOR/S6K and CREB/ΔFosB signaling.

Neuroprotective Effects of Modified Yuldahanso-tang (MYH) in a Parkinson's Disease Mouse Model (MPTP로 유도된 Parkinson's disease 동물 모델에서 열다한소탕 가감방 (MYH)의 신경 세포 보호 효과)

  • Go, Ga-Yeon;Kim, Yoon-Ha;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.27 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • Objectives To evaluate the neuroprotective effects of modified Yuldahanso-tang (MYH) in a Parkinson's disease mouse model. Methods 1) Four groups (each of 8 rats per group) were used in this study. 2) The neuroprotective effect of MYH was examined in a Parkinson's disease mouse model. C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day), intraperitoneal (i.p.) for 5 days. 3) The brains of 2 mice per group were removed and frozen at $-20^{\circ}C$, and the striatum-substantia nigra part was seperated. The protein volume was measured by Bradford method following Bio-Rad protein analyzing kit. Using mouse/Rat Dopamine ELISA Assay Kit. 4) The brains of 2 mice per group were separated and removed. TH-immunohistochemical was examined in the MPTP-induced Parkinson's disease mice to evaluate the neuroprotective effects of MYH on ST and SNpc. 5) Two mice out of each group were anesthetized and skulls were opened from occipital to frontal direction to take out the brains. The brains added TTC solution for 20 minutes for staining. 6) The water tank used for morris water maze test was filled with $28^{\circ}C$ water, and a round platform of 10cm in diameter was installed for mice to step on. The study was carried out once a day within 30 seconds, keep exercising to step on the platform in the pool. 7) The brains of two mice out of each group were fixed in 10% formaldehyde solution and paraphillin substance was infiltrated. They were fragmented by microtome, and observed under an optical microscope after Hematoxylin & Eosin staining. 8) A round acrylic cylinder with its upper side open was filled with clean water and depressive mouse models were forced to swim for 15 minutes. After 24 hours the animals were put in the same equipment for 5 minutes and were forced to swim. 9) The convenient, simple, and accurate high-performance liquid chromatography (HPLC) method was established for simultaneous determination of Neurotransmitters in MPTP-MYH group. Results 1) MYH possess Dopamine cell protective effect on MPTP-induced injury in striatum and substantia nigra pars compacta. 2) MYH inhibits the loss of tyrosine hydroxylase-immunoreacitive (TH-IR) cells in the striatum and substantia nigra pars compacta on MPTP-induced injury in C57BL/6 mice. 3) MYH possesses improvement effect on MPTP-induced memory deterioration in C57BL/6 mice through the reduction of prolongated Sort of lost time by MPTP injection using the Morris water maze test. 4) MYH possesses hippocampal neuron protective effect on MPTP-induced injury in C57BL/6 mice. 5) MYH possesses improvement effect on MPTP-induced motor behaviour deficits and depression in C57BL/6 mice through the reduction of prolongated losing motion by MPTP injection using the Forced swimming test. 6) MYH increases serotonin product amount on MPTP-induced injury in C57BL/6 mice. Conclusions This experiment suggests that the neuroprotective effect of MYH is mediated by the increase in Dopamin, TH-ir cell, Hippocampus and Serotonin. Furthermore, MYH essential oil may serve as a potential preventive or therapeutic agent regarding Parkinson's disease.

The Relation of Korean Medicine Services Use on the All-cause Mortality and Incidence of Parkinson's disease and Elderly Patients with Chronic Disease in Korea (국내 만성질환 노인환자의 한의과 진료서비스 이용과 사망률 및 파킨슨병 발생률의 관계연구)

  • Woo, Yeonju
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.25-37
    • /
    • 2021
  • Objectives : To investigate the effectiveness of Korean Medicine services use on the all-cause mortality and incidence of Parkinson's disease(PD) in elderly patients with chronic disease based on the National Health Insurance Service Corhort Database (elderly), called as the NHIS-senior. Methods : This study was a retrospective cohort analysis conducted using the NHIS-senior. Patients with chronic diseases over 65 years old who were not diagnosed PD during 2007-2009 were identified. The case group was defined as patients who used both Korean Medicine and Western Medicine services and the control group consisted of patients who used Western Medicine service only. The all-cause mortality and incidence of PD was analyzed using the Cox proportional hazard model after a propensity score matching(PSM) with a 1:1 ratio. Results : After PSM, the cohort included 47,546 subjects (23,773 in the case group, 23,773 in the control group). Sex, age, comorbidity, severity of disability, and neurology medical service utilization were adjusted in both groups. The mortality was 0.668 times (95% C.I.: 0.646-0.690) lower in the case group than the control group, which was statistically significant (p<0.001). The incidence of PD was 1.051 times (95% C.I.: 0.962-1.148) higher in the case group than the control group, which was not statistically significant(p=0.272). Conclusion : It was not obvious that the use of both Korean Medicine service and Western Medicine services for prevention of PD is benefitial than using only Western Medicine. But it would be possible that using both Korean Medicine and Western Medicine services decreases the mortality than using Western Medicine alone.

Genetically Modified Human Embryonic Stem Cells Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • 길광수;이영재;김은영;이창현;이훈택;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.74-74
    • /
    • 2003
  • Embryonic stem cells have several characteristics suitable for cell replacement therapy. To investigate a possibility of using human embryonic stem cell (hESC) as a carrier of therapeutic gene(s), hESC (MB03) was co-transfected with cDNAS coding for tyrosine hydroxylase (TH) and GTP cyclohydrolase Ⅰ (GTPCH Ⅰ) and bulk-selected using neomycin and hygromycin-B. Successful transfection was confirmed by western immunoblotting and RT-PCR. The genetically modified hESC (bk-THGC) relieved apomorphine-induced asymmetric motor behavior by approximately 54% when grafted into striatum of 6-OHDA-denervated rat brain. The number of rotation, however, increased up to 176+18% in 6 weeks when sham-grafted compared with number of rotation before graft. Immunohistochemical staining revealed that the grafted hESC survived and expressed TH for at least 6 weeks while the experiment was continued.

  • PDF

Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production

  • Chen, Dong;Zhang, Xiao-Ya;Sun, Jing;Cong, Qi-Jie;Chen, Wei-Xiong;Ahsan, Hafiz Muhammad;Gao, Jing;Qian, Jin-Jun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.442-449
    • /
    • 2019
  • This study sought to evaluate the effects of Asiatic acid in LPS-induced BV2 microglia cells and 1-methyl-4-phenyl-pyridine ($MPP^+$)-induced SH-SY5Y cells, to investigate the potential anti-inflammatory mechanisms of Asiatic acid in Parkinson's disease (PD). SH-SY5Y cells were induced using $MPP^+$ to establish as an in vitro model of PD, so that the effects of Asiatic acid on dopaminergic neurons could be examined. The NLRP3 inflammasome was activated in BV2 microglia cells to explore potential mechanisms for the neuroprotective effects of Asiatic acid. We showed that Asiatic acid reduced intracellular production of mitochondrial reactive oxygen species and altered the mitochondrial membrane potential to regulate mitochondrial dysfunction, and suppressed the NLRP3 inflammasome in microglia cells. We additionally found that treatment with Asiatic acid directly improved SH-SY5Y cell viability and mitochondrial dysfunction induced by $MPP^+$. These data demonstrate that Asiatic acid both inhibits the activation of the NLRP3 inflammasome by downregulating mitochondrial reactive oxygen species directly to protect dopaminergic neurons from, and improves mitochondrial dysfunction in SH-SY5Y cells, which were established as a model of Parkinson's disease. Our finding reveals that Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing NLRP3 inflammasome activation in microglia cells as well as protecting dopaminergic neurons directly. This suggests a promising clinical use of Asiatic acid for PD therapy.

Ameliorative Effects of NXP031 on MPTP-Induced Neurotoxicity (MPTP로 유도된 신경 독성에 대한 NXP031의 개선 효과)

  • Lee, Joo Hee;Song, Min Kyung;Kim, Youn-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate effects of NXP031, an inhibitor of oxidation by specifically binding to the complex of DNA aptamer/vitamin C, on dopaminergic neurons loss and the reaction of microglia in an animal model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subchronic Parkinson's disease (PD). Methods: A subchronic PD mouse model was induced via an intraperitoneal (IP) injection of MPTP 30 mg/kg per day for five days. NXP031 (vitamin C/aptamer at 200 mg/4 mg/kg) and vitamin C at 200 mg/kg were administered via IP injections at one hour after performing MPTP injection. This process was performed for five days. Motor function was then evaluated with pole and rotarod tests, after which an immunohistochemical analysis was performed. Results: NXP031 administration after MPTP injection significantly improved motor functions (via both pole and rotarod tests) compared to the control (MPTP injection only) (p<.001). NXP031 alleviated the loss of dopaminergic neurons in the substantia nigra (SN) and striatum caused by MPTP injection. It was found to have a neuroprotective effect by reducing microglia activity. Conclusion: NXP031 can improve impaired motor function, showing neuroprotective effects on dopaminergic neurons in the SN and striatum of MPTP-induced subchronic Parkinson's disease mouse model. Results of this study suggest that NXP031 has potential in future treatments for PD and interventions for nerve recovery.

Improvement of Motor Behavior of Parkinson′s Disease Animal Model by Nurr1-Transfected Human Embryonic Stem Cells.

  • Lee, Chang-Hyun;Cho, Hwang-Yoon;Kil, Kwang-Soo;Lee, Gun-Soup;Yoon, Ji-Yeon;Lee, Young-Jae;Kim, Eun-Young;Park, Se-Pill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.103-103
    • /
    • 2003
  • The purpose of this study is to evaluate an efficacy of in vitro differentiated human embryonic stem (hES, MB03) cells expressing Nurr1 in relief of symptomatic motor behavior of Parkinson's disease (PD) animal models MB03 was genetically modified to express Nurr1 protein and was induced to differentiate according to 2-/4+ protocol using retinoic acid and ascorbic acid. The differentiation-induced cells were selected for 10 to 20 days thereafter in N2 medium. Upon selection, cells expressing GFAP, TH, or NF200 were 38.8%, 11%, and 20.5%, respectively. in order to examine therapeutic effects of the differentiated cells in PD animal model, rats were unilaterally lesioned by administration of 6-kydroxydopamine HCI (6-OHDA) into medial forebrain region (MFB, AP -4.4 mm, ML 1.2 mm, DV 78 mm with incision bar set at -2.4 mm), as a reference to bregma and the surface of the skull. Confirmation of successful lesion by apomorphine-induced rotational behavior, differentiated cells were transplanted into the striatum (AP 1.0, ML 3.5, DV -5.0; AP 0.6, ML 2.5, DV -4.5). Improvements of asymmetric motor behavior by the transplantation were examined every two weeks after the surgery. In two weeks, numbers of rotation by the experimental rats were $-14.8 \pm 33.9%$ (P<0.05) of the number before transplantation, however, the ratio increased slightly to $13.6 \pm 56.3%$ in six weeks. In contrast, the ratio of sham-grafted animals ranged from 112.3+8.5% to 139.2+28.9% during the examination. Immunohistochemical studies further confirmed the presence, survival, migration, and expression of TH of the transplanted human cells.

  • PDF

Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats

  • Ryu, Sang Baek;Bae, Eun Kyung;Kim, Jinhyung;Hwang, Yong Sup;Im, Changkyun;Chang, Jin Woo;Shin, Hyung-Cheul;Kim, Kyung Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 2013
  • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation.

Korean Red Ginseng protects dopaminergic neurons by suppressing the cleavage of p35 to p25 in a Parkinson's disease mouse model

  • Jun, Ye Lee;Bae, Chang-Hwan;Kim, Dongsoo;Koo, Sungtae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Background: Ginseng is known to have antiapoptotic, anti-inflammatory, and antioxidant effects. The present study investigated a possible role of Korean Red Ginseng (KRG) in suppressing dopaminergic neuronal cell death and the cleavage of p35 to p25 in the substantia nigra (SN) and striatum (ST) using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. Methods: Ten-week-old male C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 d, and then administered KRG (1 mg/kg, 10 mg/kg, or 100 mg/kg) once a day for 12 consecutive days from the first injection. Pole tests were performed to assess the motor function of the mice, dopaminergic neuronal survival in the SN and ST was evaluated using tyrosine hydroxylase-immunohistochemistry, and the expressions of cyclin-dependent kinase 5 (Cdk5), p35, and p25 in the SN and ST were measured using Western blotting. Results: MPTP administration caused behavioral impairment, dopaminergic neuronal death, increased Cdk5 and p25 expression, and decreased p35 expression in the nigrostriatal system of mice, whereas KRG dose-dependently alleviated these MPTP-induced changes. Conclusion: These results indicate that KRG can inhibit MPTP-induced dopaminergic neuronal death and suppress the cleavage of p35 to p25 in the SN and the ST, suggesting a possible role for KRG in the treatment of Parkinson's disease.

Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model

  • Kim, Dongsoo;Kwon, Sunoh;Jeon, Hyongjun;Ryu, Sun;Ha, Ki-Tae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.429-435
    • /
    • 2018
  • Background: Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods: Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20 mg/kg) four times at 2-h intervals, after which KRG (100 mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results: KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion: These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD.