• Title/Summary/Keyword: Park and Watkins model(PW model)

Search Result 1, Processing Time 0.014 seconds

A Numerical Study of Tumble Effect on Spray/wall Impingement in the D. I. Engines (직접분사식 엔진내의 분무/벽 충돌 현상에서 텀블 효과에 관한 연구)

  • Chae, Soo;Yang, Hyup;Ryou, Su-Yeal;Ryou, Hong-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.45-57
    • /
    • 2002
  • In this paper, the results gained by applying many impingement models to the cylinder and flat plate were analyzed in comparison with the experimental data to study a spray/wall interaction phenomena. To begin with, the behavior of spray injected normal to the wall was analysed using three different impingement models ; Naber and Reitz model(NR model), Watkins and Wang model(WW model) and Park and Watkins model(PW model) in the present calculation. The results obtained from these models were compared with experimental data of Katsura et. al. The results indicated that PW model was in better agreement with experimental data than the NR and WW model. Also f3r spray injected at 30DEG , the result of three models were compared with experimental data of Fujimoto et. al. The results showed that m model overpredicted the penetration in the radial direction because this model was based on the inviscid jet analogy. WW model did not predicted the radius and height of the wall spray effectively. It might be thought that this discrepancy was due to the lack of consideration of spray film velocity occurred at impingement site. The result of PW model agrees with the experimental data as time goes on. In particular, a height of the spray droplets was predicted more closely to the experimental data than the other two models. The results of PW model in which the spray droplets were distributed densely around the edge of droplet distribution shaped in a circle had an agreement with the experimental data of Fujimoto et. al. Therefore, it was concluded that PW model performed better than M and WW model for prediction of spray behavior. The numerical calculation using PW model performed to the cylinder similar to the real shape of DI engine. The results showed that vortex strength near the wall in the cylinder was stronger than that in the case of flat plate. Contrary to the flat plat, an existence of the side wall in the cylinder caused the tangential velocity component to be reduced and the normal velocity component to be increased. The flow tends to rotate to the inside of cylinder going upward to the right side wall of cylinder gradually as time passes. Also, the results showed that as the spray angle increases, the gas velocity distribution and the tumble flow seemed to be formed widely.