• Title/Summary/Keyword: Pareto optimal solutions

Search Result 107, Processing Time 0.022 seconds

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes (고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화)

  • Zhou, Tianjun;Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.557-567
    • /
    • 2016
  • In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

An Optimal Intermodal-Transport Algorithm using Dynamic Programming (동적 프로그래밍을 이용한 최적복합운송 알고리즘)

  • Cho Jae-Hyung;Kim Hyun-Soo;Choi Hyung-Rim;Park Nam-Kyu;Kang Moo-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.3
    • /
    • pp.20-33
    • /
    • 2006
  • Because of rapid expansion of third party logistics, fierce competition in the transportation industry, and the diversification and globalization of transportation channels, an effective transportation planning by means of multimodal transport is badly needed. Accordingly, this study aims to suggest an optimal transport algorithm for the multimodal transport in the international logistics. As a solution for this problem, first of all, we have applied a pruning algorithm to simplify it, suggesting a heuristic algorithm for constrained shortest path problem to find out a feasible area with an effective time range, which has been applied to the Label Setting Algorithm, consequently leading to multiple Pareto optimal solutions. Also, in order to test the efficiency of the algorithm for constrained shortest path problem, this paper has applied it to the actual transportation path from Busan port of Korea to Rotterdam port of Netherlands.

  • PDF

Design Optimization for 3D Woven Materials Based on Regression Analysis (회귀 분석에 기반한 3차원 엮임 재료의 최적설계)

  • Byungmo, Kim;Kichan, Sim;Seung-Hyun, Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.351-356
    • /
    • 2022
  • In this paper, we present the regression analysis and design optimization for improving the permeability of 3D woven materials based on numerical analysis data. First, the parametric analysis model is generated with variables that define the gap sizes between each directional wire of the woven material. Then, material properties such as bulk modulus, thermal conductivity coefficient, and permeability are calculated using numerical analysis, and these material data are used in the polynomial-based regression analysis. The Pareto optimal solution is obtained between bulk modulus and permeability by using multi-objective optimization and shows their trade-off relation. In addition, gradient-based design optimization is applied to maximize the fluid permeability for 3D woven materials, and the optimal designs are obtained according to the various minimum bulk modulus constraints. Finally, the optimal solutions from regression equations are verified to demonstrate the accuracy of the proposed method.

A Multiobjective Model for Locating Drop-off Boxes for Collecting Used Products

  • Tanaka, Ken-Ichi;Kobayashi, Hirokazu;Yura, Kenji
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.351-358
    • /
    • 2013
  • This paper proposes a multiobjective model describing the trade-offs involved in selecting the locations of drop-off boxes for collecting used products and transporting these products to designated locations. We assume the following reverse flow of used products. Owners of used products (cellular phones, digital cameras, ink cartridges, etc.) take them to the nearest drop-off box when the distance is reasonably short. We also assume that owners living closer to drop-off boxes dispose of more used products than do owners living farther from drop-off boxes. Different types of used products are collected, with each type requiring its own drop-off box. A transportation destination for each product is specified. Three objectives are considered: maximizing the volume of used products collected at drop-off boxes; minimizing the cost of transporting collected products to designated locations; and minimizing the cost of allocating space for drop-off boxes. We formulate the above model as a multiobjective integer programming problem and generate the corresponding set of Pareto optimal solutions. We apply the model to an area using population data for Chofu City, Tokyo, Japan, and analyze the trade-offs between the objectives.

An Interactive Multi-criteria Group Decision Making with the Minimum Distance Measure (최소 거리척도를 이용한 대화형 다기준 그룹 의사결정)

  • Cho, Namwoong;Kim, Jaehee;Kim, Sheung-Kown
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.42-50
    • /
    • 2006
  • The multi-criteria group decision making (MCGDM) problem is to determine the best compromise solution in a set of competing alternatives that are evaluated under conflicting criteria by decision maker (DM)s. In this paper, we propose a mixed-integer programming (MIP) model to solve MCGDM. The existing method based on minimizing a distance measure such as Median Approach can not guarantee the best compromise solution because the element of median point vector is defined with respect to each criteria separately. However, by considering all criteria simultaneously, we generate median point that is better for locating the best compromise solution. We also utilize the concept of spatial dispersion index (SDI) to produce a threshold value, which is used as a guideline to choose either the Utopian Approach or the Median Approach. And we suggest using CBITP (Convex hull of individual maxima Based Interactive Tchebycheff Procedure) to provide DMs with various Pareto-optimal solutions so that DMs have broad range of selection.

Multi-objective Optimization for Force Design of Tensegrity Structures (텐세그리티 구조물 설계를 위한 다목적 최적화 기법에 관한 연구)

  • Ohsaki, Makoto;Zhang, Jingyao;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • A multi-objective optimization approach is presented for force design of tensegrity structures. The geometry of the structure is given a priori. The design variables are the member forces, and the objective functions are the lowest eigenvalue of the tangent stiffness matrix that is to be maximized, and the deviation of the member forces from the target values that is to be minimized. The multi-objective programming problem is converted to a series of single-objective programming problems by using the constraint approach. A set of Pareto optimal solutions are generated for a tensegrity grid to demonstrate the validity of the proposed method.

  • PDF

Optimum Design of a Pin-Fins Type Heat Sink Using the CFD and Mathematical Optimization

  • Park, Kyoung-Woo;Oh, Park-Kyoun;Lim, Hyo-Jae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2005
  • The shape of $7\times7$ pin-fins heat sink is optimized numerically to obtain the minimum pressure drop and thermal resistance. In this study, the fin height (h), fin width (w), and fan-to-heat sink distance (c) are chosen as the design variables and the pressure drop $({\Delta}P)$ and thermal resistance $(\theta_j)$ are adopted as the objective functions. To obtain the optimum design values, we used the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: W=4.653 mm, h=59.215mm, and c=2.667mm. The objective functions corresponding to the optimal design are calculated as ${\Delta}P=6.82$ Pa and $(\theta_j)=0.56K/W$. The Pareto solutions are also presented for various weighting coefficients and they will offer very useful data to design the pin-fins heat sink.

Design Optimization of a Pin-Fin Type Heat Sink (핀-휜형 방열판의 설계 최적화)

  • 김형렬;박경우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.860-869
    • /
    • 2003
  • Design optimization of the heat sink with 7${\times}$7 square pin-fins is performed numerically using the Computational Fluid Dynamics (CFD) and the Computer Aided Optimization (CAO). In the pin-fins heat sink, the optimum design variables for fin height (h), fin width (w), and fan-to-heat sink distance (c) can be achieved when the thermal resistance ($\theta$$_{j}$) at the junction and the overall pressure drop ($\Delta$p) are minimized simultaneously. To complete the optimization, the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem are used. The results show that the optimum design variable for the weighting coefficient of 0.5 are as follows: w=4.653 mm, h=59.215 mm, and c=2.667 mm. In this case, the objective functions are predicted as 0.56K/W of thermal resistance and 6.91 Pa of pressure drop. The Pareto optimal solutions are also presented.re also presented.d.

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Implemention of the System-Level Multidisciplinary Design Optimization Using the Process Integration and Design Optimization Framework (PIDO 프레임워크를 이용한 시스템 레벨의 선박 최적설계 구현)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.93-102
    • /
    • 2020
  • The design of large complex mechanical systems, such as automobile, aircraft, and ship, is a kind of Multidisciplinary Design Optimization (MDO) because it requires both experience and expertise in many areas. With the rapid development of technology and the demand to improve human convenience, the complexity of these systems is increasing further. The design of such a complex system requires an integrated system design, i.e., MDO, which can fuse not only domain-specific knowledge but also knowledge, experience, and perspectives in various fields. In the past, the MDO relied heavily on the designer's intuition and experience, making it less efficient in terms of accuracy and time efficiency. Process integration and the design optimization framework mainly support MDO owing to the evolution of IT technology. This paper examined the procedure and methods to implement an efficient MDO with reasonable effort and time using RCE, an open-source PIDO framework. As a benchmarking example, the authors applied the proposed MDO methodology to a bulk carrier's conceptual design synthesis model. The validity of this proposed MDO methodology was determined by visual analysis of the Pareto optimal solutions.