• Title/Summary/Keyword: Pareto optimal path

Search Result 9, Processing Time 0.029 seconds

An Algorithm for Searching Pareto Optimal Paths of HAZMAT Transportation: Efficient Vector Labeling Approach (위험물 수송 최적경로 탐색 알고리즘 개발: Efficient Vector Labeling 방법으로)

  • Park, Dong-Joo;Chung, Sung-Bong;Oh, Jeong-Taek
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • This paper deals with a methodology for searching optimal route of hazard material (hazmat) vehicles. When we make a decision of hazmat optimal paths, there is a conflict between the public aspect which wants to minimize risk and the private aspect which has a goal of minimizing travel time. This paper presents Efficient Vector Labeling algorithm as a methodology for searching optimal path of hazmat transportation, which is intrinsically one of the multi-criteria decision making problems. The output of the presented algorithm is a set of Pareto optimal paths considering both risk and travel time at a time. Also, the proposed algorithm is able to identify non-dominated paths which are significantly different from each other in terms of links used. The proposed Efficient Vector Labeling algorithm are applied to test bed network and compared with the existing k-shortest path algorithm. Analysis of result shows that the proposed algorithm is more efficient and advantageous in searching reasonable alternative routes than the existing one.

Evolutionary Multi - Objective Optimization Algorithms using Pareto Dominance Rank and Density Weighting (파레토 지배순위와 밀도의 가중치를 이용한 다목적 최적화 진화 알고리즘)

  • Jang, Su-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.213-220
    • /
    • 2004
  • Evolutionary algorithms are well-suited for multi-objective optimization problems involving several. often conflicting objective. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. Recently, pareto-based evolutionary algorithms uses a density information in fitness assignment scheme for generating uniform distributed global pareto optimal front. However, the usage of density information is not Important elements in a whole evolution path but plays an auxiliary role in order to make uniform distribution. In this paper, we propose an evolutionary algorithms for multi-objective optimization which assigns the fitness using pareto dominance rank and density weighting, and thus pareto dominance rank and density have similar influence on the whole evolution path. Furthermore, the experimental results, which applied our method to the six multi-objective optimization problems, show that the proposed algorithms show more promising results.

Multiple Path Based Vehicle Routing in Dynamic and Stochastic Transportation Networks

  • Park, Dong-joo
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.25-47
    • /
    • 2000
  • In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.

  • PDF

Optimization for the Design Parameters of Electric Locomotive Overhaul Maintenance Facility (전기 기관차 중수선 시설의 설계 변수 최적화)

  • Um, In-Sup;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2010
  • In this paper, we propose a optimization approach for the Electric Locomotive Overhaul Maintenance Facility (ELOMF), which aims at the simulation optimization so as to meet the design specification. In simulation design, we consider the critical path and sensitivity analysis of the critical (dependent) factors and the design (independent) parameters for the parameter selection and reduction of the metamodel. Therefore, we construct the multi-objective non-linear programming. The objective function is normalized for the generalization of design parameter while the constraints are composed of the simulation-based regression metamodel for the critical factors and design factor's domain. Then the effective solution procedure based on the pareto optimal solution set is proposed. This approach provides a comprehensive approach for the optimization of Train Overhaul Maintenance Facility(TOMF)'s design parameters using the simulation and metamoels.

An Optimal Intermodal-Transport Algorithm using Dynamic Programming (동적 프로그래밍을 이용한 최적복합운송 알고리즘)

  • Cho Jae-Hyung;Kim Hyun-Soo;Choi Hyung-Rim;Park Nam-Kyu;Kang Moo-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.3
    • /
    • pp.20-33
    • /
    • 2006
  • Because of rapid expansion of third party logistics, fierce competition in the transportation industry, and the diversification and globalization of transportation channels, an effective transportation planning by means of multimodal transport is badly needed. Accordingly, this study aims to suggest an optimal transport algorithm for the multimodal transport in the international logistics. As a solution for this problem, first of all, we have applied a pruning algorithm to simplify it, suggesting a heuristic algorithm for constrained shortest path problem to find out a feasible area with an effective time range, which has been applied to the Label Setting Algorithm, consequently leading to multiple Pareto optimal solutions. Also, in order to test the efficiency of the algorithm for constrained shortest path problem, this paper has applied it to the actual transportation path from Busan port of Korea to Rotterdam port of Netherlands.

  • PDF

A Study On Bi-Criteria Shortest Path Model Development Using Genetic Algorithm (유전 알고리즘을 이용한 이중목적 최단경로 모형개발에 관한 연구)

  • 이승재;장인성;박민희
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.77-86
    • /
    • 2000
  • The shortest path problem is one of the mathematical Programming models that can be conveniently solved through the use of networks. The common shortest Path Problem is to minimize a single objective function such as distance, time or cost between two specified nodes in a transportation network. The sing1e objective model is not sufficient to reflect any Practical Problem with multiple conflicting objectives in the real world applications. In this paper, we consider the shortest Path Problem under multiple objective environment. Wile the shortest path problem with single objective is solvable in Polynomial time, the shortest Path Problem with multiple objectives is NP-complete. A genetic a1gorithm approach is developed to deal with this Problem. The results of the experimental investigation of the effectiveness of the algorithm are also Presented.

  • PDF

A Hybrid Model of $A^*$ Search and Genetic Algorithms for ATIS under Multiple Objective Environment (다목적 환경에서의 ATIS 운영을 위한 $A^*$ 탐색 알고리듬과 유전자 알고리듬의 혼합모형)

  • Chang, In-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.421-430
    • /
    • 2000
  • This paper presents a new approach which uses $A^*$ search and genetic algorithms for solving large scale multi-objective shortest path problem. The focus of this paper is motivated by the problem of finding Pareto optimal paths for an advanced traveler information system(ATIS) in the context of intelligent transportation system(ITS) application. The individual description, the decoding rule, the selection strategy and the operations of crossover and mutation are proposed for this problem. The keynote points of the algorithm are how to represent individuals and how to calculate the fitness of each individual. The high performance of the proposed algorithm is demonstrated by computer simulations.

  • PDF

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.

An Optimal Intermodal-Transport Algorithm using Dynamic Programming (동적 프로그래밍을 이용한 최적복합운송 알고리즘)

  • Cho Jae-Hyung;Kim Hyun-Soo;Choi Hyung-Rim;Park Nam-Kyu;Kim So-Yeon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.95-108
    • /
    • 2006
  • Because of rapid expansion of third party logistics, fierce competition in the transportation industry, and the diversification and globalization of transportation channels, an effective transportation planning by means of multimodal transport is badly needed. Accordingly, this study aims to suggest an optimal transport algorithm for the multimodal transport in the international logistics. Cargoes and stopovers can be changed numerously according to the change of transportation modes, thus being a NP-hard problem. As a solution for this problem, first of all, we have applied a pruning algorithm to simplify it, suggesting a heuristic algorithm for constrained shortest path problem to find out a feasible area with an effective time range and effective cost range, which has been applied to the Label Setting Algorithm, consequently leading to multiple Pareto optimal solutions. Also, in order to test the efficiency of the algorithm for constrained shortest path problem, this paper has applied it to the actual transportation path from Busan port of Korea to Rotterdam port of Netherlands.

  • PDF