• Title/Summary/Keyword: Parent rocks

Search Result 75, Processing Time 0.026 seconds

Genesis of Talc Ore Deposits in the Yesan Area of Chungnam, Korea (충남(忠南) 예산지구(禮山地區) 활석광상(滑石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Woo, Young-Kyun;Choi, Suck-Won;Park, Ki-Hwa
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.363-378
    • /
    • 1991
  • Field and microscopic evidence, XRD,EPMA and chemical data suggest that parent rock of talc ore deposits of Yesan district was originated from ultramafic igneous rock. Parent rock can be divided into serpentinized dunite, serpentinized peridotite, metagabbro, amphibolite and hornblende schist. The ore deposits are highly sheared, and show many evidences of hydrothermal alteration and metamorphism at the greenschist and albite-epidote amphibolite facies. The process of steatitization is variable depending upon the composition, and the degree of alteration and metamorphism of the parent rocks. Steatitization can be divided into two processes with or without serpentinization. The parent rocks with serpentinization are serpentinized dunite, serpentinized peridotite and metagabbro, showing the following alteration process; olivine ${\rightarrow}$ serpentine${\rightarrow}$ talc. The rocks without serpentinization are amphibolite and hornblende schist showing the following sequence; hornblende${\rightarrow}$ chlorite${\rightarrow}$ talc. Formation of talc deposits is summarized as following six stages; I) Intrusion of ultramafic rocks, 2) autometamorphism, 3) metamorphism at greenschist and albite-epidote-amphibolite facies, 4) brittle deformation, 5) hydrothermal alteration, 6) purification of low-grade talc by late dyke intrusion.

  • PDF

Differences in Morphological Properties and Soil Moisture Characteristics Curve of Cultivated Land Derived from Major Parent Rocks in Yeong-nam Province Areas (영남지역 주요 모암지대별 밭토양 모래입자의 형태적 특성 및 토양수분특성곡선의 차이에 관한 연구)

  • Sonn, Yeon-Kyu;Jung, Yeun-Tae;Son, Il-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.211-214
    • /
    • 1999
  • To acknowledge the differences in soil physical properties of cultivated land derived from major parent rocks in Yeong-nam areas, we investigated Riley's projection sphericity(one of the morphological properties) of sand and made up Soil Moisture Characteristics Curve(SMCC). The averages in Riley s projection sphericity range from 0.63 to 0.67 in soils derived from Sedimentary rocks than 0.56 to 0.61 in soils derived from igneous rocks. In case of soils derived from igneous rocks, the Riley's projection sphericity is lower as the particle size get to be smaller. The differences of SMCC were larger in the fine loamy soils than in coarse loamy soils. The moisture retention was higher in the soils derived from Sedimentary rocks than in the soils derived from Igneous rocks. After we transformed the water retention into dimensionless scale value by available water ratio, the SMCC was nearly unchangeable in the tested soils except for fine loamy soils derived from Sedimentary rock, but was not correlated with soil texture or parent rocks.

  • PDF

Mineralogy and Cheimical Composition of Soils with Relation to the Types of Parent Rocks in the Northern Pusan Area (부산 북부지역의 모암유형에 따른 토양의 구성광물 및 화학성분)

  • 김의선;황진연;김진섭;함세영;김재곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • The Cretaceous granite, andesite and sedimentary rocks are widely distributed in the northern Pusan area. The present study investigates mineralogical and geochemical charateristics of residual and cultivated soils derived from these rocks. The soils of granite area contain a large amount of quartz relative to clay minerals, whereas the soils of the andesite area contain more clay minerals than quartz. Clay minerals consist mainly of kaolin minerals illite hydroxy interlayered vermiculite interstratified mica/vermiculite and chlorite. Kaolin minerals are abundant in paddy soils while illite is abundant in less weathered soils. Si and K are major elements in the soils of granite area while Fe and Al in the soils of andesite area. In all the soils Ca, Mg and Na were generally depleted in comparison to those in parent rocks. Analysis data of trace element show that the enrichment pattern in soils depends on parent rock type with high oncentration of some elements over 100 ppm: Ba and Rb in granite area Zn, Bn, and V in andesite area, and Ba and V in sedimentary rock. In granite area, Rb and Th were greatly enriched in soil than in parent rocks. However, Cr, Ni and Sr commonly decrease, whereas Pb increases in all the soils. Exchangeable cation capacity(CEC) is relatively high in the soils of andesite are including abundant clay minerals. Collective evidences prove that the mineralogical and chemical compositions of soils are strongly dependent on the parent rock type. The mineralogy and chemistry of long cultivated soils are not significantly different from those of residual soils.

  • PDF

The Trace Element Characteristics of Rocks, Top Soils, and Pinus rigida Growing on Soils Derived from Different Parent Rocks (서로 다른 모암과 토양의 미량원소 특성 및 리기다소나무의 원소 함량)

  • 민일식;김명희;송석환
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.22-29
    • /
    • 1998
  • This study is investigated for the trace element concentration in the soils derived from different parent rocks, which are serpentinites, metamorphic rocks and black shales, and the absorption of the trace element by Pinus rigida in Hongseong and Keumsan, Chungnam, respectively. The concentrations of nickel, chrominium and cobalt are high in the serpentinites, whereas the concentrations of zinc, molybdenium and iron are high in the metamorphic rocks. These elements in black shale are lower than those in serpentinites and metamorphic rocks. The serpentine soils show high nickel, chrominium and cobalt content, while zinc and iron content are high in the mixed soils(serpentinites + metamorphic rocks) and black shales. Comparing with parent rocks, all of trace elements in their weathered soils are low. The pH of serpentine soil is high, 7.73~9.55 and that of black shale soil in 5.61. In serpentine area, the absorptions of chrominium by P. rigida is lower than its in the soils. The absorption of zinc by P. rigida is high relative to zinc concentration in soils. The Co/Ni and Fe/Ni quotient in P. rigida over serpentine soils are considerably lower than those growing over other soils tpes.

  • PDF

A Study on the Valley Shapes with Different Parent Rocks in Yeongnam Area (영남지역(嶺南地域) 주요(主要) 모암별(母岩別) 곡간(谷間)의 특성(特性)에 관한 연구(硏究))

  • Yun, Eul-Soo;Jung, Yeun-Tae;Kim, Min-Tae;Jung, Ki-Yuol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.139-144
    • /
    • 2000
  • This study was conducted to obtain the basic information to increase the practical use of soil survey data through the subdividing of valley shapes with soil sequences due to different parent rocks, and to study the relationship between the valley shapes and parent rock. The various rocks such as sedimentary(gray shale and sand stone) and igneous rocks(granite, granite gneiss and andesite porphyry) which are the major parent rocks in Yeongnam area were investigated. The characteristics of valleys formed and the kinds of soils derived from different rocks were analysed by using aerial photographs and topographical maps scaled 1:5,000. The rill density in igneous rock area was as high as 40. But the rill bifurcation ratio of first order stream was higher in the sedimentary than the igneous rocks except granite area. The mean slope of valleys in igneous areas was about 8%, which was higher than that of the sedimentary areas. The variability of valley width in the complexly metamorphosed rock, such as granite gneiss, and andesite porphyry, was greater than in sedimentary and in granite rocks. Based on the variability of valley widths and valley slopes, it was possible to classify the valleys into two types. The "Uterus-shaped valleys" had wide variability of valley width and were located in the areas of granite gneiss and andesite porphry rocks. while the "Roots-shaped valleys" had narrow variability of valley width and were located in the sedimentary areas. "Uterus-shaped valleys" were typified by having land forms of mountain foot slopes and alluvial fans, and the soil drainage sequences also had complexities. So that, we concluded that the variability of valley width and valley slopes was associated with kinds of parent rocks and metamorphism which influences soil sequence and characteristics.

  • PDF

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -I. Rock-forming Minerals and Mineralogical Characteristics of the Parent Rocks (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토(土壤粘土) 광물(鑛物)의 특성(特性)과 생성학적(生成學的) -I. 조암광물(造岩鑛物)과 광물학적(鑛物學的) 특성(特性))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Young-Ho;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • A study was carried out to investigate the composition of rock-forming minerals and mineralogical characteristics of the five major parent rocks in Korea. The identification was done through the analyses of chemical. X-ray diffraction, thermal(DTA, TG), infrared spectroscopic, and microscopic methods. Among these methods, X-ray diffraction was considered to be the most rapid and effective way to identify minerals in the parent rocks. The main rock-forming minerals of the parent rocks were feldspars, quartz, and micas in granite and granite-gneiss, calcite and dolomite in limestone, quartz and calcite in shale, plagioclase and augite in basalt. A small amount of sesquioxides was identified as a accessory mineral by means of DTA from the parent rocks of Weoljeong series(granite) and Cheongsan series(granite-gneiss). The abrasion pH affecting the soil formation ranged from 7.5 to 8.4 in the parent rocks containing ferromagnesian minerals and carbonates. In the granite and granite-gneiss of which the main rock-forming minerals were feldspars and quartz with low content of biotite, the abrasion pH ranged from 6.2 to 6.4. In chemical composition of the parent rocks, Si, AI, and K oxides tented to increase with higher contents of quartz, feldspars, and muscovite, while Fe and Mg oxides with higher content of biotite, chlorite, amphiboles, and augite. Higher ignition loss in limestone and shale resulted in the release of $CO_2$ from calcite and/or dolomite.

  • PDF

Effects of Parent Rocks on Soil Microbial Diversity (모암이 토양미생물 다양성에 미치는 영향)

  • Suh, Jang-Sun;Kwon, Jang-Sik;Chon, Gil-Hyong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • The effect of parent rocks to the soil microbial diversity were investigated in soils developed from granite, limestone and basalt parent rocks. In the soils, microbial populations were positively related to the soil chemicals, such as soil pH with ftuorescent Pseudomonas, and soil EC with actinomycetes, fungi, mesophilic Bacillus and alkaliphilic bacteria. Gram negative bacteria, spore forming Bacillus, were maintained relatively same levels of population between granite, limestone and basalt soils. Among the species of Burkholderia, Pseudomonas and Ralstonia were dominated in the granite soils, Pseudomonas, Burkholderia and Phyllobacterium in the limestone soils, and Burkholderia in the basalt soils.

Characteristics of Radon Variability in Soils at Busan Area (부산광역시 일대의 토양 내 라돈 농도 변화 특성)

  • Kim, Jin-Seop;Kim, Sun-Woong;Lee, Hyo-Min;Choi, Jeong-Yun;Moon, Ki-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The characteristics of temporal spacial radon variation in soil according to parent rock type and affecting factors were studied in Busan, Korea. The concentration of $^{222}Rn$ in soils and their parent elements ($^{226}Ra$,$^{228}Ra$, U and Th) in rocks and soils were measured at 24 sites in Busan area. The distribution and transportation behavior of these parent elements were analyzed and their correlations to radon concentration in soil were determined. Topographic effects were also evaluated. Two in-situ radon measurement (soil probe and buried tube) methods were applied to measure radon concentration in soil and their accuracies were evaluated. The spatial variation of radon in soil generally reflected U concentration in the parent rock. Average radon concentrations were higher in plutonic rocks than in volcanic rocks and were decreased in the order of felsic>intermediate>mafic rock. However, the radon concentrations were significantly varied in soils developed from same parent rocks due to the disequilibrium of U and $^{226}Ra$ between rock and soil. As results, the correlation of these element concentrations between rocks and soils was very low and radon concentrations in soils had highly co-related to the concentrations of these elements in soils. Th and $^{228}Ra$ show complex enrichment characteristics, differing significantly with U, in soils developed from same parent rock because the geochemical behavior of these elements during weathering and soil developing process was different with U. The radon concentrations in the same depth of soil in slope area were also different according to positions. The radon concentrations in soils developed from same parent rocks (19 sites at Pusan National University) varied 6.8~29.8Bq/L range because of small scale topographic variation. The opposite seasonal variation pattern of radon were observed according to soil properties. It was determined that buried tube method is more accurate method than soil probe method and was very advantageous application for the analysis for the characteristics of temporal spacial radon variation in soil.

Oxygen Isotope Study on the Wolf River Batholith, Wisconsin in U.S.A. (미국 위시컨신주의 올프리버 저반에 대한 산소동위원소 연구)

  • Sun-Joon Kim;Yuch-Ning Shieh
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.124-133
    • /
    • 1995
  • Oxygen isotope compositions have been determined for the granitic and the related rocks from the Wolf River Ratholith, Wisconsin in U.S.A. Plutons which belong to the differentiation trend are almost identical in oxygen isotope fractionation, and plutons of undifferential sequences also show oxygen isotope compositions similar to each other, which show little isotope fractionations at high temperature range. In oxygen osotope composition, the country rocks (the Penokean plutonic rocks), which is higher by 1~2 permil than the batholith are improbable source of the batholith. However, the assimilation of parent magma of lower ${\delta}^{18}O$ values than the batholith with the Penokean plutonic rocks might have produced the batholith.

  • PDF

The Present of State of the Metal and Gold Deposits, Indonesia (인도네시아의 금속광상과 금광상 분포현황)

  • 김인준;이재호;서정률;이사로;김유봉;이규호
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.269-276
    • /
    • 2004
  • The Indonesian Archipelago is located in the southern tip of the Eurasian plate. The diverse subduction system of the Indonesia region records interactions between three megaplates (Eurasian, Indian-Australian, and Pacific plates) and many smaller plates. The geology of Indonesian Archipelago is characterized by many factors such as subduction zone complexes, magmatic arc rocks associated with plate tectonics, the arc granite and volcanic rocks, and the related metamorphic rocks. The base-metal deposits of Indonesia have a great effect on petrochemical character of parent rocks and geotectonic environments. The base-metal deposits can be classified into four types as hosted by felsic-intermediate intrusive rocks, hosted by ultramafic rocks, hosted by volcanic rocks, and hosted by sedimentary rocks. The gold deposits are divided into three types: epithermal gold deposits, porphyry copper associated gold deposits, and alluvial gold deposits. Especially, Indonesian island uc, with its numerous plates tectonic, has an high potential for epithermal gold deposits. Indonesia with many old and present subduction zones and sub-aerial calcalkaline volcanic rocks is a very promising country for epithermal gold mineralization.