• Title/Summary/Keyword: Parcellation

Search Result 4, Processing Time 0.018 seconds

Successive Fuzzy Classification and Improved Parcellation Method for Brain Anlaysis (뇌 구조 분석을 위한 연속적인 퍼지 분할법과 구획화 방법의 개선)

  • 윤의철;황진우;김재석;김재진;김인영;권준수;김선일
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.377-384
    • /
    • 2001
  • Generally. there have been limitations to investigate structural brain abnormalities with MR images for psychiatric patients. such as schizophrenia. depression and autism, since the brain abnormalities of psychiatric Patients are too small to be detected easily. It has been suggested to exploit the result of size-comparison or analysis of specified Part in various brain tissues. Results of brain analysis highly depend on accuracy of the brain segmentation because it is hard to segment image that the boundary between tissues in the brain MRI is inherently value. In this Paper. we improve the quality of brain segmentation so that we increase the credit of brain analysis. In addition, we Provide the improved images for studying brain abnormalities through left-right insular volume measure using handy software tool .

  • PDF

Cortical Thickness of Resting State Networks in the Brain of Male Patients with Alcohol Dependence (남성 알코올 의존 환자 대뇌의 휴지기 네트워크별 피질 두께)

  • Lee, Jun-Ki;Kim, Siekyeong
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Objectives It is well known that problem drinking is associated with alterations of brain structures and functions. Brain functions related to alcohol consumption can be determined by the resting state functional connectivity in various resting state networks (RSNs). This study aims to ascertain the alcohol effect on the structures forming predetermined RSNs by assessing their cortical thickness. Methods Twenty-six abstinent male patients with alcohol dependence and the same number of age-matched healthy control were recruited from an inpatient mental hospital and community. All participants underwent a 3T MRI scan. Averaged cortical thickness of areas constituting 7 RSNs were determined by using FreeSurfer with Yeo atlas derived from cortical parcellation estimated by intrinsic functional connectivity. Results There were significant group differences of mean cortical thicknesses (Cohen's d, corrected p) in ventral attention (1.01, < 0.01), dorsal attention (0.93, 0.01), somatomotor (0.90, 0.01), and visual (0.88, 0.02) networks. We could not find significant group differences in the default mode network. There were also significant group differences of gray matter volumes corrected by head size across the all networks. However, there were no group differences of surface area in each network. Conclusions There are differences in degree and pattern of structural recovery after abstinence across areas forming RSNs. Considering the previous observation that group differences of functional connectivity were significant only in networks related to task-positive networks such as dorsal attention and cognitive control networks, we can explain recovery pattern of cognition and emotion related to the default mode network and the mechanisms for craving and relapse associated with task-positive networks.

Pattern Analysis of Volume of Basal Ganglia Structures in Patients with First-Episode Psychosis (초발 정신병 환자에서 기저핵 구조물 부피의 패턴분석)

  • Min, Sally;Lee, Tae Young;Kwak, Yoobin;Kwon, Jun Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.2
    • /
    • pp.38-43
    • /
    • 2018
  • Objectives Dopamine dysregulation has been regarded as one of the core pathologies in patients with schizophrenia. Since dopamine synthesis capacity has found to be inconsistent in patients with schizophrenia, current classification of patients based on clinical symptoms cannot reflect the neurochemical heterogeneity of the disease. Here we performed new subtyping of patients with first-episode psychosis (FEP) through biotype-based cluster analysis. We specifically suggested basal ganglia structural changes as a biotype, which deeply involves in the dopaminergic circuit. Methods Forty FEP and 40 demographically matched healthy participants underwent 3T T1 MRI. Whole brain parcellation was conducted, and volumes of total 6 regions of basal ganglia have been extracted as features for cluster analysis. We used K-means clustering, and external validation was conducted with Positive and Negative Syndrome Scale (PANSS). Results K-means clustering divided 40 FEP subjects into 2 clusters. Cluster 1 (n = 25) showed substantial volume decrease in 4 regions of basal ganglia compared to Cluster 2 (n = 15). Cluster 1 showed higher positive scales of PANSS compared with Cluster 2 (F = 2.333, p = 0.025). Compared to healthy controls, Cluster 1 showed smaller volumes in 4 regions, whereas Cluster 2 showed larger volumes in 3 regions. Conclusions Two subgroups have been found by cluster analysis, which showed a distinct difference in volume patterns of basal ganglia structures and positive symptom severity. The result possibly reflects the neurobiological heterogeneity of schizophrenia. Thus, the current study supports the importance of paradigm shift toward biotype-based diagnosis, instead of phenotype, for future precision psychiatry.

  • PDF

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.