• Title/Summary/Keyword: Paraxial optics

Search Result 33, Processing Time 0.017 seconds

Design of an Achromatic Optical System Using a Symmetry Graphical Method (대칭 그래픽 방식을 이용한 광학계의 색수차 보정 설계)

  • Lim, Tae-Yeon;Ahn, Byoung-In;Jo, Sun-Hyoung;Kim, Jeongyun;Park, Sung-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • In this study, we present a symmetry graphical method to design an achromatic optical system composed of many lenses on an achromatic glass map. To take into account the lens spacing and the number of lenses, we use the relative ratio of paraxial ray height at each lens and the concept of an equivalent single lens. Converting an arbitrary optical system into various doublet systems, the most effective doublet is then selected to correct the color aberration, through material selection and the redistribution of the optical power. By designing a fisheye lens using this approach, an achromatic optical system is effectively obtained over the visible waveband.

Analysis and Design of an Accommodation-Dependent Eye Model Based on Navarro Model (Navarro 모형안에 기반을 둔 조절을 고려한 모형안의 설계 및 분석)

  • Kang, Eun Kyoung;Park, Sung Chan;Kim, Jin Joo;Hwangbo, Chang Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.235-240
    • /
    • 2010
  • Purpose: In this study, we proposed a simple accommodation-dependent crystalline lens with a constant volume and homogeneous refractive index. Methods: We proposed a human crystalline lens with two aspheric surfaces. Two surfaces intersect in two points and straight line between two points was equator(2b). It assumed that the derivative in axial direction was zero at the equator and the radial derivative was zero at the vertex. Proposed human crystalline lens was divided by the equator into the anterior and posterior parts. It was assume that the volume of each part and refractive index of the human crystalline lens were constant during accommodation. Results: For the changes during accommodation, geometrical parameters were determined by different objective distances. Considering the constant volume of each part with the small decrement of the equator, we obtained the paraxial parameters, such as the anterior and posterior vertex radius of curvature and lens thickness. Compared with the experimental data published in the literature, calculated values using simple approximation showed similar change per accommodative stimulus. Conclusions: These results showed that proposed simple approximation using assumption of constant volume and refractive index of the human crystalline lens made it possible to predict changes of geometrical parameters during accommodation.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.