• Title/Summary/Keyword: Parastic element

Search Result 6, Processing Time 0.021 seconds

Characteristics of Radiation Pattern and Power Gain for Circular Array Dipole Antennas (원형 배열 다이폴 안테나의 방사 지향성 및 이득 특성)

  • 이종녕;양규식;김기채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.253-259
    • /
    • 2003
  • This paper presents the basic characteristics of a 5 element dipole array antenna which has a four parastic element and one driving element at the center of the circular array. The coupled integral equations for the unknown current distributions on dipole elements are derived and solved by applying Galerkin's method of moments. The numerical results show that the highest power gain of 7.8 dBi is obtained at radius of d = 0.3lλ when two short circuited parastic element neighbors. In order to verify the theoretical analysis, the radiation pattern is compared with Preston's results.

Design of a wideband H-shaped Microstrip Antenna for WLAN (WLAN용 광대역 H-모양 마이크로스트립 안테나)

  • 이진우;이문수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.625-628
    • /
    • 2003
  • In this paper, a wideband two-layer H-shaped microstrip antenna for WLAN is designed and studied experimentally. To increase the bandwidth of microstrip patch antenna, a configuration of stacked type using parastic element is used, Furthermore, to reduce the size of microstrip patch antenna, the first technique is H-shaped patch type. the second technique is that the main radiator and parastic patch are shorted to the ground plane using ten shorting posts. The antenna bandwidth and radiation characteristics are calculated by ENSEMBLE ver. 5.0 simulation software, and compared with the experimental results, Experimental results show that the return loss is less than -10dB over the band of 5.086GHz to 5.832GHz, which is quite good agreement with the calculations.

  • PDF

Design of a Miniature Wideband H-shaped Microstrip Antenna for WLAN (WLAN용 소형 광대역 H-모양 마이크로스트립 안테나)

  • 이문수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.173-173
    • /
    • 2004
  • In this paper, a wideband two-layer H-shaped microstrip antenna for WLAN is designed. To increase the bandwidth of microstrip patch antenna a configuration of stacked type using parastic element is used. Furthermore, to reduce the size of microstrip patch antenna, two techniques are employed . the first one is H-shaped patch type and the second one is that the main radiator and parastic patch are shorted to the ground plane using ten shorting posts. The antenna bandwidth and radiation characteristics are calculated by ENSEMBLE ver. 5.0 simulation software, and compared with the experimental results. Experiment results show that the bandwidth of antenna in 740㎒ centered at 5.46㎓(13.5%), which is close agreement with the calculations, 770㎒(13%). Also, the antenna size can be reduced by 71.5% compared with the half wavelength rectangular microstrip antenna using the same substrate at the same frequency.

A Small Broadband Antenna for Wibro/WLAN/Mobile WiMAX (Wibro/WLAN/Mobile WiMAX용 소형 광대역 안테나)

  • Ko, Jeong-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.568-575
    • /
    • 2011
  • In this paper, we propose a small broadband antenna for mobile device. The proposed antenna consists of a printed rectangular monopole antenna and a parastic element connected to ground using narrow meander line and it is designed on a FR-4 substrate that has a thickness of 0.8 mm and a dielectric constant of 4.4. The FR-4 substrate's size is 50 mm${\times}$90 mm comparable to the real mobile device. The fabricated antenna's size is 12.5 mm${\times}$10.5 mm${\times}$0.8 mm and the measurement shows -10 dB return loss bandwidth of 2,200~6,000 MHz and gains of 2.86~4.01 dBi. Accordingly, the proposed antenna can support mobile device for WiBro(2,300~2,380 MHz), WLAN(IEEE 802.11b/g/n: 2,400~2,480 MHz, IEEE 802.11a: 5,150~5,825 MHz), and mobile WiMAX(IEEE 802.16e : 2,500~2,690 MHz, 3,400~3,600 MHz) service bands.

A Study on the Design of Meander Slot Antenna for the Zigbee Module and Improvement of Its Return Loss (지그비 모듈용 미앤더 슬롯 안테나 설계 및 반사손실 개선에 관한 연구)

  • Lee, Young-Soon;Kim, Ui-Jung;Kim, Byoung-Sam;Jang, Bong-Ki
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.167-173
    • /
    • 2010
  • In order to design small printed antenna restricted within narrow area of $30mm{\times}8mm$ for the Zigbee module and improve its return loss, meander slot antenna with a floating conductor as the parastic element has been proposed. The resonant frequency and bandwidth(VSWR${\leq}$2) of the antenna designed and fabricated in the present study is about 2.44GHz and 113MHz respectively. The radiation pattern is almost similar to that of dipole antenna within the operation frequency range. Also the radiation efficiency and gain of the proposed antenna is more than 60% and 2.7dBi respectively. It has been observed that the characteristics the proposed antenna mentioned above satisfy the specification required of the Zigbee application. In order to validate the proposed antenna, some simulated and measured results are presented and compared.

Design of a Miniature Wideband H-shaped Microstrip Antenna for WLAN (WLAN용 소형 광대역 H-모양 마이크로스트립 안테나)

  • 이진우;이종철;윤서용;이문수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.15-20
    • /
    • 2004
  • In this paper, a wideband two-layer H-shaped microstrip antenna for WLAN is designed. To increase the bandwidth of microstrip patch antenna a configuration of stacked type using parastic element is used. Furthermore, to reduce the size of microstrip patch antenna, two techniques are employed . the first one is H-shaped patch type and the second one is that the main radiator and parastic patch are shorted to the ground plane using ten shorting posts. The antenna bandwidth and radiation characteristics are calculated by ENSEMBLE ver. 5.0 simulation software, and compared with the experimental results. Experiment results show that the bandwidth of antenna in 740MHz centered at 5.46㎓(13.5%), which is close agreement with the calculations, 770MHz(13%). Also, the antenna size can be reduced by 71.5% compared with the half wavelength rectangular microstrip antenna using the same substrate at the same frequency.