• 제목/요약/키워드: Parastic Resistance

검색결과 2건 처리시간 0.018초

NiZn 페라이트를 내장한 LTCC 인덕터 및 응용 (An LTCC Inductor Embedding NiZn Ferrite and Its Application)

  • 원유준;김희준
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권10호
    • /
    • pp.534-539
    • /
    • 2006
  • An integrated inductor using the low-temperature co-fired ceramics(LTCC) technology for low-power electronics was fabricated. In the inductor NiZn ferrite sheet$({\mu}_r=230)$, was embedded to increase inductance. The inductor has Ag spiral coil with 14 turns$(7turns{\times}2layers)$, a dimension of 0.6mm in width, 10um in thickness, and 0.15mm pitch. To evaluate the inductance, including the parasitic resistance, the fabricated inductor was calculated and measured. It was confirmed that calculated values were very close to the measured values. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC boost DC/DC converter with 1W output power and up to 0.5MHz switching frequency using the inductor fabricated was developed.

Watkins-Johnson 컨버터의 동작특성 해석 (Operation Analysis of th Watkins-Johnson Converter)

  • 안태영
    • 전자공학회논문지S
    • /
    • 제34S권6호
    • /
    • pp.85-93
    • /
    • 1997
  • This paper analyzes the steady-state and dynamic characteristics of the watkings-johnson converter. the major contributions of this paper includ identification of the following characteristics unique to the watkins-johnson converter: (1) The output voltage of the converter is nearly constant at the continous conduction mode (CCM), and at discontinousou conduction mode (DCM) it decreses linerly as the output curretn increases. (2) The control-to-output transfer function is a second-order one with a left-half-plane (LHP) zero determined by the combination of the output capacitor and equivalent series resistor of the converter. This LHP zero signinificantly improves the stability of the converter. (3) The control-to-output transfer function reduces to a first-order one, as the converter moves from CCM to DCM. (4) The parastic resistance of the inductor does not cause any significant influence on poles and zeros of the transfer function.

  • PDF