• Title/Summary/Keyword: Parasitic Resonant Current

Search Result 22, Processing Time 0.022 seconds

A Novel Multi-Level Type Energy Recovery Sustaining Driver for AC Plasma Display Panel (새로운 AC PDP용 멀티레벨 에너지 회수회로)

  • Hong, Soon-Chang;Jung, Woo-Chong;Kang, Kyoung-Woo;Yoo, Jong-Gul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.71-78
    • /
    • 2005
  • This paper proposes a novel multi-level energy recovery sustaining driver for AC PDP(Plasma Display Panel), which solves the problems of the conventional multi-level sustaining driver. While the conventional circuit improves the voltage md current stress of the switching elements in Weber circuit not only there are parasitic resonant currents between resonant inductors and parasitic capacitance and hard switching, but also the changing period between 0 and sustain voltage is too long. Comparing the proposed circuit with the conventional circuit, the number of components are reduced and the parasitic resonant currents in resonant inductors are eliminated Moreover the hard switching problem is solved by using CIM(Current Injection Method) and the operating frequency will be high as much as possible by removing Vs/2 sustain period. And the circuit operations of the proposed circuit are analyzed for each mode and the validity is verified by the simulations using PSpice program.

Series Resonant ZCS- PFM DC-DC Converter using High Frequency Transformer Parasitic Inductive Components and Lossless Inductive Snubber for High Power Microwave Generator

  • Kwon, Soon-Kurl;Saha, Bishwajit;Mun, Sang-Pil;Nishimura, Kazunori;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.18-25
    • /
    • 2009
  • Conventional series-resonant pulse frequency modulation controlled DC-DC high power converters with a high-frequency transformer link which is designed for driving the high power microwave generator has the problem of hard switching commutation at turn-on and turn-off of active power switching devices. This problem is due to the influence of the magnetizing current of the high-frequency transformer. This paper presents a novel prototype for a high-frequency transformer using parasitic parameters with a lossless inductive snubber and a series resonant capacitor assisted series-resonant zero current switching pulse frequency modulated DC-DC power converter, which is designed using a high power magnetron for microwave ovens. In order to implement a complete and efficient soft switching commutation, the performance of the new converter topology is practically confirmed and evaluated in the prototype of a power microwave generator.

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

ESP by using Half-bridge ZCS resonant inverter and Cockroft-Walton circuit (Half-Bridge ZCS resonant inverter 및 Cockroft-Walton회로를 사용한 공기 청정기에 관한 연구)

  • Park, Jong-Woong;Jeong, Jong-Jin;Chung, Hyun-Ju;Joung, Jong-Han;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1951-1953
    • /
    • 2004
  • In this study, we propose a small high voltage power supply which use a half-bridge ZCS resonant and Cockroft-Walton on circuit, for ESP (Electrostatic Precipitator). This power supply transfers energy from ZCS resonant inverter to step-up transformer and the transformer secondary is applied to the Cockroft-Walton circuit for generating high voltage as discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50 % in this ESP.

  • PDF

A Study on the NPC Type Multi-Level Energy Recovery Sustaining Driver for AC Plasma Display Panel (AC PDP용 NPC 타입 멀티레벨 에너지 회수회로에 관한 연구)

  • Yoo Jong-Gul;Hong Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.194-202
    • /
    • 2005
  • This paper proposes a new multi-level energy recovery sustaining driver for AC PDP(Plasma Display Panel), which solves the problems and maintains the merits of the conventional multi-level sustaining driver. While the conventional circuit improves the hard switching in the Weber circuit, there exist parasitic resonant currents in resonant inductors and Vs/2 sustaining period. Comparing the proposed circuit with the conventional circuit, the number of inductors are reduced by half, the parasitic resonant currents in resonant inductors are eliminated, and the hard switching problem is solved by CIM(Current Injection Method). Moreover the voltages across series-connected switching elements in the full bridge circuit are distributed equally by adopting NPC(Neutral Point Clamping) techniques. And circuit operations of the proposed circuit are analyzed for each mode and the validity is verified by the simulations using PSpice program and experimentation with a prototype drive circuit.

Study of AC/DC Resonant Pulse Converter for Energy Harvesting (에너지 획득을 위한 AC/DC 공진형 펄스 컨버터의 연구)

  • Ngo Khai D.T.;Chung Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.274-281
    • /
    • 2005
  • A new resonant pulse converter for energy harvesting is proposed. The converter transfers energy from a low-voltage AC current to a battery. The low-voltage AC current source is an equivalent of the piezoelectric generator, which converts the mechanical energy to the electric energy. The converter consists of a full-bridge rectifier having four N-type MOSFETs and a boost converter haying N-type MOSFET and P-type MOSFET instead of diode. Switching of MOSFETs utilizes the capability of the $3^{rd}$ regional operation. The operational principles and switching method for the power control of the converter are investigated with the consideration of effects of the parasitic capacitances of MOSFETs. Simulation and experiment are performed to prove the analysis of the converter operation and to show the possibility of the $\mu$W energy harvesting.

Full Wave Cockroft Walton Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • A high-voltage power supply has been built for activation of the brain via stimulation using a Full Wave Cockroft-Walton Circuit (FWCW). A resonant half-bridge inverter was applied (with half plus/half minus DC voltage) through a bidirectional power transistor to a magnetic stimulation device with the capability of producing a variety of pulse forms. The energy obtained from the previous stage runs the transformer and FW-CW, and the current pulse coming from the pulse-forming circuit is transmitted to a stimulation coil device. In addition, the residual energy in each circuit will again generate stimulation pulses through the transformer. In particular, the bidirectional device modifies the control mode of the stimulation coil to which the current that exceeds the rated current is applied, consequently controlling the output voltage as a constant current mode. Since a serial resonant half-bridge has less switching loss and is able to reduce parasitic capacitance, a device, which can simultaneously change the charging voltage of the energy-storage condenser and the pulse repetition rate, could be implemented. Image processing of the brain activity was implemented using a graphical user interface (GUI) through a data mining technique (data mining) after measuring the vital signs separated from the frequencies of EEG and ECG spectra obtained from the pulse stimulation using a 90S8535 chip (AMTEL Corporation).

Cavity-type and Parasitic-type Couplings through a Harrow Slit in A Parallel-Plate Waveguide with a Conducting Strip (평행평판도파관의 좁은 슬릿을 통한 도체 스트립과의 캐비티형 결합과 기생형 결합)

  • 이종익;고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.384-392
    • /
    • 2003
  • In this study, the electromagnetic coupling through a narrow transverse slit in the upper wall of a parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab is considered. Two contrastive coupling phenomena, cavity-type and parasitic-type, observed in the geometry have been distinguished by differences in the resonant strip lengths and offset positions, induced strip current, radiation pattern, frequency bandwidth, and electromagnetic field distributions near the coupling slit.

A CW $CO_2$ Laser Using a High Voltage Dc-dc Converter with Half-bridge Resonant Inverter and Cockroft-Walton Multiplier

  • Chung, Hyun-Ju;Joung, Jong-Han;Kim, Geun-Young;Min, Byoung-Dae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.123-129
    • /
    • 2003
  • We propose a high voltage dc-dc converter for a CW (continuous wave) $CO_2$ laser system using a current resonant half-bridge inverter and a Cockcroft-Walton circuit. This high voltage power supply includes a 2-stage voltage multiplier driven by a regulated half-bridge series resonant inverter. The inverter drives a step-up transformer and the secondary transformer is applied to the voltage multiplier. It is highly efficient because of the reduced amount of switching losses by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up secondary transformer combined with the Cockroft-Walton circuit. We obtained a maximum laser output power of 44 W and a maximum system efficiency of over 16%.