• 제목/요약/키워드: Paraoxonase

검색결과 33건 처리시간 0.021초

Human Paraoxonase 1(PON1)의 유전자 다형성에 따른 중풍환자의 습담 변증과의 상관성 연구 (Genetic Association of SNPs Located at PON1 Gene with Dampness and Phlegm Pattern Identification among Korean Stroke Patients)

  • 임지혜;고미미;이정섭;방옥선;차민호
    • 대한한방내과학회지
    • /
    • 제31권4호
    • /
    • pp.752-762
    • /
    • 2010
  • Objective : In the present study, we investigated genetic distribution of eight single nucleotide polymorphisms of PON1 between Dampness and Phlegm and non Dampness and Phlegm pattern identification(PI) among Korean stroke patients. Materials and Methods : One hundred forty stroke subject without Dampness and Phlegm and fifty eight stroke subjects with Dampness and Phlegm were participated in this study. After informed consents, eight single nucleotide polymorphisms(SNPs) in PON1 of each subjects were identified by DNA sequencing and primer extension method and statistical analysis was performed to determine the significant difference between Dampness and Phlegm and non Dampness and Phlegm groups. Results : Among anthropometric characteristics and blood parameters, waist circumference and total cholesterol were significantly higher in Dampness and Phlegm. Among 8 SNPs of PON1, frequency of M allele and subjects with M allele in L55M SNP were significantly higher in Dampness and Phlegm group (p=0.0032 and p=0.0053, respectively) but subjects with T allele in C-2033T SNP were lower in Dampness and Phlegm group(p=0.0302). Effect of L55M and C-2033T on Dampness and Phlegm were 3.07% and 1.75%, respectively. Conclusion : Our results suggest that L55M SNP in exon and C-2033T in promoter region of PON1 maybe affect to Dampness and Phlegm pattern identification. However, further study should be carried out to find out the detailed mechanism how L55M and C-2033T can affect Dampness and Phlegm stroke patients.

PEP-1-paraoxonase 1 fusion protein prevents cytokine-induced cell destruction and impaired insulin secretion in rat insulinoma cells

  • Lee, Su Jin;Kang, Hyung Kyung;Choi, Yeon Joo;Eum, Won Sik;Park, Jinseu;Choi, Soo Young;Kwon, Hyeok Yil
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.538-543
    • /
    • 2018
  • Pancreatic beta cell destruction and dysfunction induced by cytokines is a major cause of type 1 diabetes. Paraoxonase 1 (PON1), an arylesterase with antioxidant activity, has been shown to play an important role in preventing the development of diabetes in transgenic mice. However, no studies have examined the anti-diabetic effect of PON1 delivered to beta cells using protein transduction. In this study, we expressed the cell-permeable PON1 fused with PEP-1 protein transduction domain (PEP-1-PON1) to investigate whether transduced PEP-1-PON1 protects beta cells against cytokine-induced cytotoxicity. PEP-1-PON1 was effectively delivered to INS-1 cells and prevented cytokine-induced cell destruction in a dose-dependent manner. Transduced PEP-1-PON1 significantly reduced the levels of reactive oxygen species (ROS) and nitric oxide (NO), DNA fragmentation, and expression of inflammatory mediators, endoplasmic reticulum (ER) stress proteins, and apoptosis-related proteins in cytokine-treated cells. Moreover, transduced PEP-1-PON1 restored the decrease in basal and glucose-stimulated insulin secretion induced by cytokines. These data indicate that PEP-1-PON1 protects beta cells from cytokine-induced cytotoxicity by alleviating oxidative/nitrosative stress, ER stress, and inflammation. Thus, PEP-1-mediated PON1 transduction might be an effective method to reduce the extent of destruction and dysfunction of pancreatic beta cells in autoimmune diabetes.

Engineered Recombinant PON1-OPH Fusion Hybrids: Potentially Effective Catalytic Bioscavengers against Organophosphorus Nerve Agent Analogs

  • Lee, Nari;Yun, Hyeongseok;Lee, Chan;Lee, Yikjae;Kim, Euna;Kim, Sumi;Jeon, Hyoeun;Yu, Chiho;Rho, Jaerang
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.144-153
    • /
    • 2021
  • Organophosphorus nerve agents (OPNAs), including both G- and V-type nerve agents such as sarin, soman, tabun and VX, are extremely neurotoxic organophosphorus compounds. Catalytic bioscavengers capable of hydrolyzing OPNAs are under development because of the low protective effects and adverse side effects of chemical antidotes to OPNA poisoning. However, these bioscavengers have certain limitations for practical application, including low catalytic activity and narrow specificity. In this study, we generated a fusion-hybrid form of engineered recombinant human paraoxonase 1 (rePON1) and bacterial organophosphorus hydrolase (OPH), referred to as GV-hybrids, using a flexible linker to develop more promising catalytic bioscavengers against a broad range of OPNAs. These GV-hybrids were able to synergistically hydrolyze both G-type OPNA analogs (paraoxon: 1.7 ~ 193.7-fold, p-nitrophenyl diphenyl phosphate (PNPDPP): 2.3 ~ 33.0-fold and diisopropyl fluorophosphates (DFP): 1.4 ~ 22.8-fold) and V-type OPNA analogs (demeton-S-methyl (DSM): 1.9 ~ 34.6-fold and malathion: 1.1 ~ 4.2-fold above) better than their individual enzyme forms. Among the GV-hybrid clones, the GV7 clone showed remarkable improvements in the catalytic activity toward both G-type OPNA analogs (kcat/Km (106 M-1 min-1): 59.8 ± 0.06 (paraoxon), 5.2 ± 0.02 (PNPDPP) and 47.0 ± 6.0 (DFP)) and V-type OPNA analogs (kcat/Km (M-1 min-1): 504.3 ± 48.5 (DSM) and 1324.0 ± 47.5 (malathion)). In conclusion, we developed GV-hybrid forms of rePON1 and bacterial OPH mutants as effective and suitable catalytic bioscavengers to hydrolyze a broad range of OPNA analogs.

Transcriptional activation of an anti-oxidant mouse Pon2 gene by dexamethasone

  • Lim, Ji-Ae;Kim, Sang-Hoon
    • BMB Reports
    • /
    • 제42권7호
    • /
    • pp.421-426
    • /
    • 2009
  • Glucocorticoids regulate multiple physiological processes such as metabolic homeostasis and immune response. Mouse Pon2 (mPon2) acts as an antioxidant to reduce cellular oxidative stress in cells. In this present study, we investigated the transcriptional regulation of mPon2 by glucocorticoids. In the presence of glucocorticoid analogue dexamethasone, the expression of mPon2 mRNA in cells was increased, whereas the expression was inhibited by a transcription inhibitor actinomycin D. Glucocorticoid receptors bound to the putative glucocorticoid response elements located between -593 bp and -575 bp of the mPon2 promoter. Transcriptional activity was completely blocked when the putative element was mutated. Taken together, these results suggest that the expression of the mPon2 gene is directly regulated by glucocorticoid-glucocorticoid receptor complexes.

Quorum Sensing and Quorum-Quenching Enzymes

  • Dong, Yi-Hu;Zhang, Lian-Hui
    • Journal of Microbiology
    • /
    • 제43권spc1호
    • /
    • pp.101-109
    • /
    • 2005
  • To gain maximal benefit in a competitive environment, single-celled bacteria have adopted a community genetic regulatory mechanism, known as quorum sensing (QS). Many bacteria use QS signaling systems to synchronize target gene expression and coordinate biological activities among a local population. N-acylhomoserine lactones (AHLs) are one family of the well-characterized QS signals in Gram-negative bacteria, which regulate a range of important biological functions, including virulence and biofilm formation. Several groups of AHL-degradation enzymes have recently been identified in a range of living organisms, including bacteria and eukaryotes. Expression of these enzymes in AHL-dependent pathogens and transgenic plants efficiently quenches the microbial QS signaling and blocks pathogenic infections. Discovery of these novel quorum quenching enzymes has not only provided a promising means to control bacterial infections, but also presents new challenges to investigate their roles in host organisms and their potential impacts on ecosystems.

Paraoxonase 1 (PON1) Q192R Gene Polymorphism and Cancer Risk: A Meta-Analysis Based on 30 Publications

  • Zhang, Meng;Xiong, Hu;Fang, Lu;Lu, Wei;Wu, Xun;Huang, Zhan-Sen;Wang, Yong-Qiang;Cai, Zhi-Ming;Wu, Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4457-4463
    • /
    • 2015
  • Common genetic variation Q192R in the paraoxonase 1 (PON1) gene has been considered to be implicated in the development of many cancers. Nevertheless, results from the related studies were inconsistent. To elucidate the association, we performed a meta-analysis for 8,112 cases and 10,037 controls from 32 published case-control studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association by STATA 12.0 software. Overall, we revealed that the PON1-192R allele was associated with a reduced risk of the overall cancers. Moreover, in the stratified analysis by cancer types (breast cancer, prostate cancer, brain cancer etc.), the results showed that PON1-192R allele was associated with a decreased risk in breast cancer (R vs Q: OR=0.605, 95% CI=0.378-0.967, $P_{heterogeneity}=0.000$; RR vs QQ: OR=0.494, 95% CI=0.275-0.888, $P_{heterogeneity}=0.002$; RQ vs QQ: OR=0.465, 95% CI=0.259-0.835, $P_{heterogeneity}=0.000$; and RR+RQ vs QQ: OR=0.485, 95% CI=0.274-0.857, $P_{heterogeneity}=0.000$), and associated with prostate cancer in homozygote (RR vs QQ: OR=0.475, 95% CI=0.251-0.897, $P_{heterogeneity}=0.001$) and recessive models (RR vs RQ+QQ: OR=0.379, 95% CI=0.169-0.853, $P_{heterogeneity}=0.000$), while an increased risk was identified in lymphoma (R vs Q: OR=1.537, 95% CI=1.246-1.896, $P_{heterogeneity}=0.944$; RR vs QQ: OR=2.987, 95% CI=1.861-4.795, $P_{heterogeneity}=0.350$; RR+RQ vs QQ: OR=1.354, 95% CI=1.021-1.796, $P_{heterogeneity}=0.824$; and RR vs RQ+QQ: OR=2.934, 95% CI=1.869-4.605, $P_{heterogeneity}=0.433$), and an increased risk in prostate cancer under heterozygote comparison (RQ vs QQ: OR=1.782, 95% CI=1.077-2.950, $P_{heterogeneity}=0.000$) and dominant models (RR+RQ vs QQ: OR=1.281, 95% CI=1.044-1.573, $P_{heterogeneity}=0.056$). When subgroup analysis that performed by the control source (hospital based or population based), a decreased risk of the overall cancers was revealed by homozygote (RR vs QQ: OR=0.601, 95% CI=0.366-0.987, $P_{heterogeneity}=0.000$) and dominant models (RR vs RQ+QQ: OR= 0.611, 95% CI=0.384-0.973, $P_{heterogeneity}=0.000$) in hospital based group. Stratifying by ethnicity, a significantly reduced risk of the overall cancers under allele contrast model (R vs Q: OR=0.788, 95% CI=0.626-0.993, $P_{heterogeneity}=0.000$) was uncovered in Caucasian. In summary, these findings suggested that PON1 Q192R polymorphism was associated with a reduced risk of the overall cancers, nevertheless, it might increase cancer susceptibility of prostate and lymphoma risk. Large well-designed epidemiological studies will be continued on this issue of interest.

머위(Petasites japonicus Maxim) 첨가 식이가 마우스 혈장 지질 수준 및 항산화 지표에 미치는 영향 (Effects of Diet with Added Butterbur (Petasites japonicus Maxim) on the Plasma Lipid Profiles and Antioxidant Index of Mice)

  • 오상희;양윤형;권오윤;김미리
    • 동아시아식생활학회지
    • /
    • 제16권4호
    • /
    • pp.399-407
    • /
    • 2006
  • We evaluated the effects of butterbur (Petasites japonicus Maxim) addition to the diet on lipid profiles and antioxidant biomarkers such as total glutathionine, TBARS value, carbonyl value, GPx, GR, SOD and paraoxonase activity in the plasma or liver of mice. The distribution of body fat deposition, total cholesterol (TC) contents, and atherogenic index in the plasma were significantly decreased in the butterbur group. The levels of GSH and the activity of GR and SOD were significantly higher in the liver of the butterbur group than in that of the control group. Lipid oxidation of the liver and kidney and protein oxidation of the liver and heart were decreased in the butterbur group. Additionally, the DNA damage, as determined using the comet assay (single cell gel assay) with alkaline electrophoresis and as quantified by measuring the tail length (TL), was decreased in the butterbur group. The results of the present study showed that a diet with added butterbur exerts degenerative disease-protective effects on oxidative DNA damage and lipid peroxidation.

  • PDF

Severely modified lipoprotein properties without a change in cholesteryl ester transfer protein activity in patients with acute renal failure secondary to Hantaan virus infection

  • Kim, Ji-Hoe;Park, Hyun-Ho;Choi, In-Ho;Kim, Young-Ok;Cho, Kyung-Hyun
    • BMB Reports
    • /
    • 제43권8호
    • /
    • pp.535-540
    • /
    • 2010
  • Patients with hemorrhagic fever with renal syndrome (HFRS) often exhibit altered serum lipid and lipoprotein profile during the oliguric phase of the disease. Serum lipid and lipoprotein profiles were assessed during the oliguric and recovery phases in six male patients with HFRS. In the oliguric phase of HFRS, the apolipoprotein (apo) C-III content in high-density lipoproteins (HDL) was elevated, whereas the apoA-I content was lowered. The level of expression and activity of antioxidant enzymes were severely reduced during the oliguric phase, while the cholesteryl ester transfer protein activity and protein level were unchanged between the phases. In the oliguric phase, electromobility of $HDL_2$ and $HDL_3$ was faster than in the recovery phase. Low-density lipoprotein (LDL) particle size was smaller and the distribution was less homogeneous. Patients with HFRS in the oliguric phase had severely modified lipoproteins in composition and metabolism.

Oxytocin Ameliorates Remote Liver Injury Induced by Renal Ischemia-Reperfusion in Rats

  • Hekimoglu, Askin Tas;Toprak, Gulten;Akkoc, Hasan;Evliyaoglu, Osman;Ozekinci, Selver;Kelle, Ilker
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.169-173
    • /
    • 2013
  • Renal ischemia-reperfusion (IR) causes remote liver damage. Oxytocin has anti-inflammatory and antioxidant effects. The main purpose of this study was to evaluate the protective function of oxytocin (OT) in remote liver damage triggered by renal IR in rats. Twenty four rats were randomly divided into four different groups, each containing 8 rats. The groups were as follows: (1) Sham operated group; (2) Sham operated+OT group (3) Renal IR group; (4) Renal IR+OT group. OT ($500{\mu}g/kg$) was administered subcutaneously 12 and 24 hours before and immediately after ischemia. At the end of experimental procedure, the rats were sacrificed, and liver specimens were taken for histological assessment or determination of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), paraoxonase (PON-1) activity and nitric oxide (NO). The results showed that renal IR injury constituted a notable elevation in MDA, TOS, Oxidative stress index (OSI) and significantly decreased TAS, PON-1 actvity and NO in liver tissue (p<0.05). Additionally renal IR provoked significant augmentation in hepatic microscopic damage scores. However, alterations in these biochemical and histopathological indices due to IR injury were attenuated by OT treatment (p<0.05). These findings show that OT ameliorates remote liver damage triggered by renal ischemia-reperfusion and this preservation involves suppression of inflammation and regulation of oxidant-antioxidant status.

Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice

  • Kim, Young-Je;Yoon, Dae Seong;Jung, Un Ju
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.431-443
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have beneficial effects on cardiovascular and metabolic health. However, there is limited research investigating the effect of long-term supplementation with low-dose NOB on high-cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia and NAFLD in HCD-fed mice. SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks. RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, with no apparent energy intake differences. NOB supplementation suppressed HCD-induced weight loss without altering energy intake. Moreover, NOB significantly decreased the total cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin and paraoxonase were higher in the NOB-supplemented group than in the HCD control group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-related gene expression and enzyme activities. Dietary NOB supplementation may protect against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-fed mice; these effects are associated with the amelioration of inflammation and reductions in the levels of atherosclerosis-associated cardiovascular markers. CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.