• Title/Summary/Keyword: Parametric-based system

Search Result 626, Processing Time 0.027 seconds

칸반 시스템의 분석과 설계

  • 김성철
    • Korean Management Science Review
    • /
    • v.9 no.1
    • /
    • pp.3-15
    • /
    • 1992
  • In this paper, we study a manufacturing system of serial stages with general service times, in which the production of each stage and the coordination of stages are controlled by Kanban discipline. This Kanban discipline is modeled as a Discrete Event Dynamic System and a system of recursive equations is applied to study the dynamics of the system. The recursive relationship enables us to compare this Kanban discipline with the other blocking disciplines such as transfer blocking, service blocking, block-and-hold b, and block-and-hold K, and the Kanban is shown to be superior to the other disciplines in terms of makespan and throughput. As a special case, two stages Kanban system is modeled as $C_2/C_2/1/N$ queueing system, and a recursive algorithm is developed to calculate the system performance. In optimizing the system performance, the stochastic optimization approach of Robbins-Monro is employed via perturbation analysis, the way to estimate the stochastic partial derivative based on only one sample trajectory of the system, and the required commuting condition is verified. Then the stochastic convexity result is established to provide second-order optimality condition for this parametric optimization problem.

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Shape optimization for partial double-layer spherical reticulated shells of pyramidal system

  • Wu, J.;Lu, X.Y.;Li, S.C.;Zhang, D.L.;Xu, Z.H.;Li, L.P.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.555-581
    • /
    • 2015
  • Triangular pyramid and Quadrangular pyramid elements for partial double-layer spherical reticulated shells of pyramidal system are investigated in the present study. Macro programs for six typical partial double-layer spherical reticulated shells of pyramidal system are compiled by using the ANSYS Parametric Design Language (APDL). Internal force analysis of six spherical reticulated shells is carried out. Distribution regularity of the stress and displacement are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of partial double-layer spherical reticulated shells of pyramidal system and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization of six spherical reticulated shells is calculated with the span of 30m~120m and rise to span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise to span ratio are discussed with contrast to the results of shape optimization. The optimal combination of main design parameters for six spherical reticulated shells is investigated, i.e., the number of the optimal grids. The results show that: (1) The Kiewitt and Geodesic partial double-layer spherical reticulated shells of triangular pyramidal system should be preferentially adopted in large and medium-span structures. The range of rise to span ratio is from 1/6 to 1/5. (2) The Ribbed and Schwedler partial double-layer spherical reticulated shells of quadrangular pyramidal system should be preferentially adopted in small-span structures. The rise to span ratio should be 1/4. (3) Grids of the six spherical reticulated shells can be optimized after shape optimization and the total steel consumption is optimized to be the least.

Optimal variables of TMDs for multi-mode buffeting control of long-span bridges

  • Chen, S.R.;Cai, C.S.;Gu, M.;Chang, C.C.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.387-402
    • /
    • 2003
  • In the past decades, much effort has been made towards the study of single-mode-based vibration controls with dynamic energy absorbers such as single or multiple Tuned Mass Dampers(TMDs). With the increase of bridge span length and the tendency of the bridge cross-section being more slender and streamlined, multi-mode coupled vibrations as well as their controls have become very important for large bridges susceptible to strong winds. As a simple but effective device, the TMD system especially the semi-active one has become a promising option for such coupled vibration controls. However, despite various studies of optimal controls of single-mode-based vibrations with TMDs, research on the corresponding controls of the multi-mode coupled vibrations is very rare so far. For the development of a semi-active control strategy to suppress the multi-mode coupled vibrations, a comprehensive parametric analysis on the optimal variables of this control is substantial. In the present study, a multi-mode control strategy named "three-row" TMD system is discussed and the general numerical equations are developed at first. Then a parametric study on the optimal control variables for the "three-row" TMD system is conducted for a prototype Humen Suspension Bridge, through which some useful information and a better understanding of the optimal control variables to suppress the coupled vibrations are obtained. This information lays a foundation for the design of semi-active control.

New Sequential Clustering Combination for Rule Generation System (규칙 생성 시스템을 위한 새로운 연속 클러스터링 조합)

  • Kim, Sung Suk;Choi, Ho Jin
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we propose a new clustering combination based on numerical data driven for rule generation mechanism. In large and complicated space, a clustering method can obtain limited performance results. To overcome the single clustering method problem, hybrid combined methods can solve problem to divided simple cluster estimation. Fundamental structure of the proposed method is combined by mountain clustering and modified Chen clustering to extract detail cluster information in complicated data distribution of non-parametric space. It has automatic rule generation ability with advanced density based operation when intelligent systems including neural networks and fuzzy inference systems can be generated by clustering results. Also, results of the mechanism will be served to information of decision support system to infer the useful knowledge. It can extend to healthcare and medical decision support system to help experts or specialists. We show and explain the usefulness of the proposed method using simulation and results.

A New Approach to Servo System Design in Hard Disk Drive Systems

  • Kim, Nam-Guk;Choi, Soo-Young;Chu, Sang-Hoon;Lee, Kang-Seok;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.137-142
    • /
    • 2005
  • In this paper, we propose a new servo system design strategy to reduce the position error signal(PES) and track mis-registration(TMR) in magnetic disk drive systems. The proposed method provides a systematic design procedure based on the plant model and an optimal solution via an optimization with a 'Robust Random Neighborhood Search(RRNS)' algorithm. In addition, it guarantees the minimum PES level as well as stability to parametric uncertainties. Furthermore, the proposed method can be used to estimate the performance at the design stage and thus can reduce the cost and time for the design of the next generation product. The reduction of PES as well as robust stability is demonstrated by simulation and experiments.

  • PDF

A study on the design of a strip Lay-out for trimming tool of the automobile bonnet (자동차 본네트 트림 금형 스트립 레이아웃 설계에 관한 연구)

  • 정효상;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.675-681
    • /
    • 2002
  • Parametric modeling and configuration design method are a important methods for rapid design in manufacturing. This paper proposes a relation rules which parametrically models a bonnet trimming tool based on Pro/Engineer. The concept of desogn is applied a trimming die of the bonnet outer panel. Trimming die have a many parameters. Each a parameter is related the die face and punch profile. A design system consists of a Pro/Engineer, a Pro/program.

  • PDF

A simulation/analytic approach for queueing network analysis

  • Yoon, Bok-Sik
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.359-364
    • /
    • 2001
  • In this study, we try to improve the accuracy of QN-GPH by the help of simulation approach. We first establish an estimation method for GPH distributions with sufficient accuracy based on empirical distribution, and then perform a brief trial run to find appropriate empirical distributions. After getting GPH form of distributions, we continue the QN-GPH analytic steps and compute necessary performance measures. We apply the method to find sojourn time distributions in a 8-node queueing system and compare the results with the whole simulation and the original two-parametric approximation.

  • PDF

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.