• Title/Summary/Keyword: Parametric transformation

Search Result 83, Processing Time 0.017 seconds

Evaluating the Efficiency of Personal Information Protection Activities in a Private Company: Using Stochastic Frontier Analysis (개인정보처리자의 개인정보보호 활동 효율성 분석: 확률변경분석을 활용하여)

  • Jang, Chul-Ho;Cha, Yun-Ho;Yang, Hyo-Jin
    • Informatization Policy
    • /
    • v.28 no.4
    • /
    • pp.76-92
    • /
    • 2021
  • The value of personal information is increasing with the digital transformation of the 4th Industrial Revolution. The purpose of this study is to analyze the efficiency of personal information protection efforts of 2,000 private companies. It uses a stochastic frontier approach (SFA), a parametric estimation method that measures the absolute efficiency of protective activities. In particular, the personal information activity index is used as an output variable for efficiency analysis, with the personal information protection budget and number of personnel utilized as input variables. As a result of the analysis, efficiency is found to range from a minimum of 0.466 to a maximum of 0.949, and overall average efficiency is 0.818 (81.8%). The main causes of inefficiency include non-fulfillment of personal information management measures, lack of system for promoting personal information protection education, and non-fulfillment of obligations related to CCTV. Policy support is needed to implement safety measures and perform personal information encryption, especially customized support for small and medium-sized enterprises.

Functional Mapping of the Neural Basis for the Encoding and Retrieval of Human Episodic Memory Using ${H_2}^{15}O$ PET ({H_2}^{15}O$ PET을 이용한 정상인의 삽화기억 부호화 및 인출 중추 뇌기능지도화)

  • Lee, Jae-Sung;Nam, Hyun-Woo;Lee, Dong-Soo;Lee, Sang-Kun;Jang, Myoung-Jin;Ahn, Ji-Young;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.10-21
    • /
    • 2000
  • Purpose: Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using ${H_2}^{15}O$ PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Materials and Methods: Four repeated ${H_2}^{15}O$ PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Results: Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal area, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memory. Conclusion: We could localize the neural basis of the encoding and retrieval of episodic memory using ${H_2}^{15}O$ PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.

  • PDF

Effects of Motion Correction for Dynamic $[^{11}C]Raclopride$ Brain PET Data on the Evaluation of Endogenous Dopamine Release in Striatum (동적 $[^{11}C]Raclopride$ 뇌 PET의 움직임 보정이 선조체 내인성 도파민 유리 정량화에 미치는 영향)

  • Lee, Jae-Sung;Kim, Yu-Kyeong;Cho, Sang-Soo;Choe, Yearn-Seong;Kang, Eun-Joo;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.413-420
    • /
    • 2005
  • Purpose: Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head mutton correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. Materials and Methods: $[^{11}C]raclopride$ PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task: 110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Results: Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction and such changes were prominent in periphery of the striatum. Conclusion: The results suggest that misalignment of MRI-based VOI and the striatum in PET images and incorrect DAR estimation due to the head motion during the PET activation study were significant, but could be remedied by the data-driven head motion correction.