• Title/Summary/Keyword: Parametric surface

Search Result 508, Processing Time 0.032 seconds

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Earth pressures acting on vertical circular shafts considering arching effects in c-${\phi}$ soils: I. Theory (c-${\phi}$ 지반에서의 아칭현상을 고려한 원형수직터널 토압: I. 이론)

  • Kim, Do-Hoon;Lee, Dea-Su;Kim, Kyung-Ryeol;Lee, Yong-Hee;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.117-129
    • /
    • 2009
  • Several researches have been done to estimate the earth pressure on a vertical circular shaft considering three dimensional arching effect and verified them by conducting model tests. However, any equation suggested so far is not applicable in case of multi-layered soils and/or C-${\phi}$ soils. In this study, new equation for estimating the earth pressure acting on the vertical shaft in c-${\phi}$ soils is proposed. A parametric study is performed to investigate the significance of the cohesion when estimating the coefficient of earth pressure in C-${\phi}$ soils and estimating earth pressures in vertical shafts. A method which can estimate the earth pressure on vertical shafts in layered soils is also proposed by assuming a failure surface in layered soils and using the modified equation. This paper is Part I of companion papers focusing on the theoretical aspect of model developments; the experimental verification will be made in Part II.

A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis (Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.131-137
    • /
    • 2006
  • We have investigated the properties of the Singular Spectrum Analysis (SSA) coupled with the Linear Recurrent Formula which made it possible to complement the parametric time series model. The SSA has been applied to extract the underlying properties of the principal component of hydrologic time series, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, the prediction by the SSA method can be applied to hydrologic time series governed (may be approximately) by the linear recurrent formulae. This study has examined the forecasting ability of the SSA-LRF model. These methods were applied to monthly discharge and water surface level data. These models indicated that two of the time series have good abilities of forecasting, particularly showing promising results during the period of one year. Thus, the method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

Numerical Model Test of Spilled Oil Transport Near the Korean Coasts Using Various Input Parametric Models

  • Hai Van Dang;Suchan Joo;Junhyeok Lim;Jinhwan Hur;Sungwon Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.64-73
    • /
    • 2024
  • Oil spills pose significant threats to marine ecosystems, human health, socioeconomic aspects, and coastal communities. Accurate real-time predictions of oil slick transport along coastlines are paramount for quick preparedness and response efforts. This study used an open-source OpenOil numerical model to simulate the fate and trajectories of oil slicks released during the 2007 Hebei Spirit accident along the Korean coasts. Six combinations of input parameters, derived from a five-day met-ocean dataset incorporating various hydrodynamic, meteorological, and wave models, were investigated to determine the input variables that lead to the most reasonable results. The predictive performance of each combination was evaluated quantitatively by comparing the dimensions and matching rates between the simulated and observed oil slicks extracted from synthetic aperture radar (SAR) data on the ocean surface. The results show that the combination incorporating the Hybrid Coordinate Ocean Model (HYCOM) for hydrodynamic parameters exhibited more substantial agreement with the observed spill areas than Copernicus Marine Environment Monitoring Service (CMEMS), yielding up to 88% and 53% similarity, respectively, during a more than four-day oil transportation near Taean coasts. This study underscores the importance of integrating high-resolution met-ocean models into oil spill modeling efforts to enhance the predictive accuracy regarding oil spill dynamics and weathering processes.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Bending Performance Evaluation of Concrete Filled Tubular Structures With Various Diameter-thickness Ratios and Concrete Strengths (콘크리트 충전강관 구조의 직경-두께비 및 콘크리트 강도 변화에 따른 휨 성능 평가)

  • Lee, Sang-Youl;Park, Dae-Yong;Lee, Sang-Bum;Lee, Rae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.223-230
    • /
    • 2009
  • In this study we deal with bending behaviors of a concrete filled tubular(CFT) with various diameter-thickness ratios and concrete strengths. In finite element analysis using a commercial package(LUSAS), the bonding effect between concrete and steel in CFT structures is modeled by applying a joint element for the bonding surface. In order to consider the nonlinearity of concrete and steel tubes, stress-strain curves of the concrete and steel are used for the increased stresses in a plastic domain. The numerical results obtained from the proposed method show good agreement with the experimental data from load-displacement curves of a steel tube under distributed loads. Several parametric studies are focused on structural characteristics of CFT under bending effects for different diameter-thickness ratios and concrete strengths.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

A Numerical Analysis on Application of Laser Peening to Dissimilar Metal Welds in a Safety Injection Nozzle of Integral Reactor (일체형 원자로 안전주입 노즐 이종금속 용접부에 대한 레이저 피닝 적용의 수치 해석적 연구)

  • Seo, Joong-Hyun;Kim, Jong-Sung;Jhung, Myung-Jo;Ryu, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.599-608
    • /
    • 2012
  • A numerical analysis has been performed through implicit dynamic finite element analysis using the commercial package, ABAQUS in order to investigate effect of laser peening on welding residual stress mitigation of dissimilar metal welds in a safety injection nozzle of integral reactor. The implicit dynamic finite element analysis are compared with the previous experimental results. By comparison, it is identified that the implicit dynamic finite element analysis is valid for residual stress mitigation via laser peening. Implicit static finite element residual stress analysis has been performed for the dissimilar metal welds subject to inner repair welding. The analysis results represent that both axial and hoop residual stresses are tensile on inner surface of safety injection nozzle due to inner repair welding. Also Parametric study has performed to investigate effect of laser peening variables such as maximum impact pressure, duration time of pressure, spot diameter and peening direction on the welding residual stress mitigation. As a result, it is found that laser peening has the preventive maintenance effect to mitigate mainly residual stresses of region near inner surface.

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.