• Title/Summary/Keyword: Parametric method

Search Result 2,435, Processing Time 0.033 seconds

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Characteristics of the Earth Pressure Magnitude and Distribution in Jointed Rockmass (절리가 형성된 암반지층에서 발생된 토압의 크기 및 분포특성)

  • Son, Moorak;Yoon, Cheolwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.203-212
    • /
    • 2011
  • This paper investigates the caharactheristics of the earth pressure magnigue and distribution in jointed rockmass for a safe and economic design and construction of earth retaining structures installed in rock stratum. For this purpose, this study will first investigate the limitations and problems of the existing earth pressure studies and then to overcome them th study will conduct the discontinuum numerical parametric studies based on the Discrete Element Method (DEM), which can consider the joint characteristics in rock stratum. The controlled parameters include rock type and joint conditions (joint shear strength and joint angle), and the magnitude and distribution characteristics of earth pressure have been investigated considering the interactions between the ground and the retaining structures. In addition, the comparison between the earth pressures induced in rock stratum and Peck's earth pressure for soil ground has been carried out. From the comparison, it is found that the earth pressure magnitude and distribution in jointed rockmass has been highly affected by rock type and joint condition and has shown different characteristics compared with the Peck's empirical earth pressure. This result would hereafter be utilized as an important information and a useful data for the assessment of earth pressure for designing a retaining structures installed in jointed rockmass.

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue Life (피로 수명을 고려한 중형 복합재 풍력터빈 블레이드의 구조설계 및 실험 평가)

  • Gong, Chang Deok;Bang, Jo Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • In this study, the various load cases by specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade was performed using the finite element method(FEM). In the structural design, the acceptable configuration of blade structure was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable for all the considerd load cases. Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design loads and also the fatigue loads. The fatigue life for operating more than 20 years was estimated by using the well-known S-N linear damage rule, the load spectrum and Spera's empirical equations. The full-scale static test was performed under the simulated aerodynamic loads. from the experimental results, it was found that the designed blade had the structural integrity. Furthermore the measured results were agreed with the analytical results such as deflections, strains, the mass and the radial center of gravity. The studied blade was successfully certified by an international institute, GL, of Germany.

Experience of Reticulocytes Measurement at 720 nm Using Spectrophotometer (분광광도계를 이용한 720 nm에서 망상적혈구 측정 경험)

  • Sung, Hyun-Ho;Seok, Dong-In;Jung, You-Hyun;Kim, Dae-Jung;Lee, Seok-Jae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.382-389
    • /
    • 2017
  • Currently, reticulocyte experimental calculation technology used in clinical laboratories are divided two types: manual and automated. Manual reticulocyte counting using a microscopy lacks accuracy due particularly to its low reproducibility, affecting the accuracy of manual reticulocyte count. Moreover, Automatic blood corpuscle analyzer flow cytometry is difficult to be used in underdeveloped countries and small scale laboratories due to relatively high cost. Therefore, this study tried to find a new method to complement these drawbacks. The aim of this study was to compare the stained reticulocytes count by spectrophotometer and also to analyze the statistics of spectrophotometer and flow cytometer. The same 8 EDTA samples were repeated 36 times to compare the agreement between spectrophotometer and flow cytometer. This study measured the specimen diluted 600 times at 700~780 nm by 10 differences. Wavelength between 710 to 730 by absorbance showed a positive correlation between standard data and test data (r=0.967, p<0.01), presenting a correlation between variables. Statistical analyses of regression for test and standard parametric data, the optimal dilution factor was 600 times. Therefore, this study tried to technical utilizes such as contributing economical for the reticulocyte absorbance apply from the auto spectrophotometer, a monitoring system for the reticulocyte relation anemia, etc. Therefore, more extensive studies, including an auto chemical analyzer application, will be needed.

A Dynamic Analysis of PSC Box Bridge Varying Span Lengths for Increased Speeds of KTX (고속철 속도변화에 대한 PSC박스 교량의 경간길이 별 동적해석)

  • Oh, Soon Taek;Lee, Dong Jun;Shim, Young Woo;Yun, Jun Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.204-211
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of bridge during the passage of high speed railway vehicles. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyse accurately and evaluate with in-depth parametric studies for dynamic responses of various bridge span lengths running KTX railway locomotive up to increasing maximum speed(450km/h). Three dimensional frame element is used to model the simply supported pre-stressed concrete (PSC) box bridges for four span lengths(40~25m). Track irregularity employed as a stationary random process from the given spectral density functions and irregularities of both sides of the track are assumed to have high correlation. The high-speed railway vehicle (KTX) is used as 38-degree of freedom system. Three displacements (Vertical, lateral, and longitudinal) as well as three rotational components (Pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic amplification factors are evaluated by the developed procedure under various traveling conditions, such as track irregularity camber, train speed and ballast. The dynamic analysis such as Newmark-${\beta}$ and Runge-Kutta methods which are able to analyse considering the dynamic impact factors are compared and contrasted.

A Study on Trend Analysis in Sea Level Data Through MK Test and Quantile Regression Analysis (MK 검정 및 분위회귀분석을 통한 해수면 자료의 경향성 평가에 관한 연구)

  • Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Hyun-Han;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.94-104
    • /
    • 2015
  • Population and urban development along the coast is growing in South Korea, and particularly sea level rise is likely to increase the vulnerability of coastal areas. This study aims to investigate the sea level rise through Mann-Kendall(MK) test, ordinary linear regression(OR) and quantile regression analysis(QRA) with sea level data at the 20 tide stations along the coast of Korean Peninsula. First, statistically significant long-term trends were analysed using a non-parametric MK test and the test indicated statistically significant trends for 18 and 10 stations at the 5% significance level in the annual mean value of sea level and the annual maximum value of sea level, respectively. The QRA method showed better performance in terms of characterizing the degree of trend. QRA showed that an average annual rise in mean sea level is about 1-6 mm/year, and an average rise in maximum sea level is about 1-20 mm. It was found that upward convergent and upward divergent were a representative change given the nine-category distributional changes. We expect that in future work we will address nonstationarities with respect to sea level that were identified above, and develop a nonstationary frequency analysis with climate change scenarios.

A Non-parametric Trend Analysis of Water Quality Using Water Environment Network Data in Nakdong River (낙동강수계 물환경측정망 자료를 이용한 비모수적 수질 경향 비교 및 분석)

  • Kim, Jungmin;Jeong, Hyungi;Kim, Hyeran;Kim, Yongseok;Yang, Deukseok
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.61-77
    • /
    • 2020
  • In South Korea, major public waters have been systematic management under national level. Water environment network has been continuous monitoring for change of aquatic ecosystem, river and reservoir. In Water Quality Monitoring Networks, the data have been generally monitored Per eight days or month, while in Automatic Water Quality Monitoring Network the data have been monitored at daily intervals. Therefore, we were compared and analyzed water quality data between the networks using statistic method for same water quality item. Mann-kendall test results confirm that all points in Water Temperature (WT) and DO were not statistically significant. In particular, the result revealed that there is significant variation of TOC in the four different sites, TN in two different sites, TP in three different sites, WT in seven different sites, pH in two different sites between Water Quality Monitoring Network and Automatic Water Quality Monitoring Network. As a result firm LOWESS, TOC and pH clearly shows different trend. Among different sites, the water quality show the significantly positive correlations between at Sinam-Sangju2 and Namgang-Namgang4. Negative correlation significantly appeared in TP (ADD_Lower-AD1 site), TOC (DG-SG site), pH (GR-GR site), TP (JP-CN) and TN, TP, pH, EC, DO (GC-GC2-1 site).

Analysis of Effects of Reshoring Works on Short and Long Term Deflections of Flat Plates (플랫 플레이트 구조의 장단기 처짐 제어에 대한 동바리 재설치 작업의 효과 분석)

  • Kim, Jae-Yo;Park, Soo-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • RC flat plates may be governed by a serviceability as well as a strength condition, and a construction sequence and its impact on the distributions of gravity loads among slabs tied by shores are decisive factors influencing short and long term behaviors of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction, and a reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of loads in a multi-shored flat plate system. In this study, a effect of reshoring works on short and long term deflections of flat plate systems are analyzed. The slab construction loads with various reshoring schemes and slab design and construction conditions are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking and long term effects is applied. From parametric studies, the reshoring works are verified to reduce slab deflections, and the optimized conditions for the reshoring works and slab design and constructions are discussed.

Effect of Joint Cohesive Strength on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체 작용토압에 대한 절리 점착강도의 영향)

  • Son, Moorak;Solomon, Adedokun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.41-53
    • /
    • 2014
  • This study examined the magnitude and distribution of the earth pressure on the support system in a jointed rock mass by considering different joint shear strength, rock type, and joint inclination angle. The study particularly focused on the effect of joint cohesive strength for a certain condition. Based on a physical model test (Son and Park, 2014), extended parametric studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the rock and joint characteristics of rock mass. The results showed the earth pressure was strongly affected by the joint cohesive strength as well as the rock type and joint inclination angle. The study indicated that the effect of joint cohesive strength was particularly significant when a rock mass was under the condition of joint sliding. This paper investigates the magnitude of joint cohesive strength to prevent a joint sliding for each different condition. The test results were also compared with Peck's earth pressure, which has been frequently used for soil ground. The comparison indicated that the earth pressure in a jointed rock mass can be significantly different from that in soil ground. This study is expected to provide a better understanding of the earth pressure on the support system in a jointed rock mass.

Association between the self-reported periodontal health status and oral health-related quality of life among elderly Koreans (한국노인의 자가보고 치주건강상태와 구강건강관련 삶의 질의 연관성)

  • Jang, Moon-Sung;Kim, Hae-Young;Shim, Yeon-Su;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.591-600
    • /
    • 2006
  • Purpose: This study assessed the impact of self-reported periodontal health on the oral health-related quality of life among elderly Koreans. Methods: Four hundred twenty one elderly Koreans in Seoul and suburban areas were selected with a cluster (institution) sampling method, and were requested to take oral examinations and finish questionnaires on the Oral Health Impact Profile-14(OHIP-14). and self-reported periodontal health status, such as periodontal symptoms, self-rated periodontal health and periodontal treatment need. As the dependent variable, OHIP-14 showed a positive skewed distribution (skewness: 1.17), we transformed to square-root form to apply parametric analyses. Bivariate analysis by t-test and ANOVA, and multivariate analysis with the two-level regression model accounting clusters were implemented. Results: Mean age of the subjects was 74.6 years and 66.5% were women. Fourteen items of OHIP-14 were summarized to one factor explaining 78.6% of total variance and produced the Chronbach alpha coefficient of 0.92. Results from the multivariate model, adjusting for age, sex, type of institutions, ability to pay, and number of teeth present, showed significantly lower OHIP-14 with reporting less than 3 periodontal symptoms (p(O.OOO1), rating their own periodontal health as above average level (p=O.0144), and thinking they don't need any periodontal treatments in the near future (p=O.0148), than their counterparts. The intraclass-corrrelation estimated by the final model was 0.028. Conclusion: This study demonstrates a significant association between self-reported periodontal health status and the oral health-related quality of life.