• Title/Summary/Keyword: Parametric method

Search Result 2,412, Processing Time 0.033 seconds

3D Digital Design Optimization Process Considering Constructability of Freeform Structure (비정형 구조물의 시공성을 고려한 3차원 디지털 설계 최적화 프로세스)

  • Ryu, Han-Guk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.35-43
    • /
    • 2013
  • Nowadays the widely used media in architecture include visualizations, animations and three-dimensional models. 3D digital methods using active CAM(Computer Aided Manufacturing) and CNC(Computerized Numerical Control) imaging have been developed for accurate shape and 3D measurements in freeform buildings. In contrast to a conventional building using auto CAD system and others, the proposed digital optimization method is based on a combination of 3D numerical data and parametric 3D model for design and construction. The objective of this paper is therefore to present digital optimization process for constructability of freeform building. The method can be useful in the effective implementation of an error-proofing process of freeform building during design and construction phase. 3D digital coordinate data can be used effectively to identify correct size of structural and finish members and installation location of each members in construction field. In addition, architects, engineers and contractors can evaluate design, materials, constructability and identify error-proofing opportunities. Other project participants can also include representatives from all levels of management, departments as well as workers and key subcontractors' personnel, if necessary. The 3D digital optimization process is therefore appropriate to serious variations in freeform shape. For future study, the developed digital optimization method is necessary to be carried out to verify the robustness and accuracy for constructability in construction field.

Hydrological Studies on the flood and Risk of failure of the Hydraulic Structures(Ⅰ) -On the annual maximum series- (水利構造物의 破壞危險度와 設計洪水量에 관한 水文學的 硏究(Ⅰ) -年最高値 系列을 中心으로-)

  • Lee, Soon-Hyuk;Park, Myeong-Keun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.23-37
    • /
    • 1985
  • This studies were carried out to get characteristics of frequency distribution, probable flood flows according to the return periods, and the correlation between return periods and those length of records affect the Risk of failure in the annual maximum series of the main river systems in Korea. Especially, Risk analysis according to the levels were emphasized in relation to the design frequency factors for the different watersheds. Twelve watersheds along Han, Geum, Nak Dong, Yeong San and Seom Jin river basin were selected as studying basins. The results were analyzed and summarized as follows. 1. Type 1 extremal distribution was newly confirmed as a good fitted distribution at selected watersheds along Geum and Yeong San river basin. Three parameter lognormal Seom Jin river basin. Consequently, characteristics of frequency distribution for the extreme value series could be changed in connection with the watershed location even the same river system judging from the results so far obtained by author. 2. Evaluation of parameters for Type 1 extremal and three parameter lognormal distribution based on the method of moment by using an electronic computer. 3. Formulas for the probable flood flows were derived for the three parameter lognormal and Type 1 extremal distribution. 4. Equations for the risk to failure could be simplified as $\frac{n}{N+n}$ and $\frac{n}{T}$ under the condition of non-parametric method and the longer return period than the life of project, respectively. 5. Formulas for the return periods in relation to frequency factors were derived by the least square method for the three parameter lognormal and Type 1 extremal distribution. 6. The more the length of records, the lesser the risk of failure, and it was appeared that the risk of failure was increasing in propotion to the length of return periods even same length of records. 7. Empirical formulas for design frequency factors were derived from under the condition of the return periods identify with the life of Hydraulic structure in relation to the risk level. 8. Design frequency factor was appeared to be increased in propotion to the return periods while it is in inverse proportion to the levels of the risk of failure. 9. Derivation of design flood including the risk of failure could be accomplished by using of emprical formulas for the design frequency factor for each watershed.

  • PDF

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

Parametric Study on Effect of Floating Breakwater for Offshore Photovoltaic System in Waves (해상태양광 구조물용 부유식 방파제의 파랑저감성능 평가)

  • Kim, Hyun-Sung;Kim, Byoung Wan;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • There has been an increasing number of studies on photovoltaic energy generation system in an offshore site with the largest energy generation efficiency, as increasing the researches and developments of renewable energies for use of offshore space and resources to replace existing fossil fuels and resolve environmental challenges. For installation and operation of floating photovoltaic systems in an offshore site with harsher environmental conditions, a stiffness of structural members comprising the total system must be reinforced to inland water spaces as dams, reservoirs etc., which have relatively weak condition. However, there are various limitations for the reinforcement of structural stiffness of the system, including producible size, total mass of the system, economic efficiency, etc. Thus, in this study, a floating breakwater is considered for reducing wave loads on the system and minimizing the reinforcement of the structural members. Wave reduction performances of floating breakwaters are evaluated, considering size and distance to the system. The wave loads on the system are evaluated using the higher-order boundary element method (HOBEM), considering the multi-body effect of buoys. Stresses on structural members are assessed by coupled analyses using the finite element method (FEM), considering the wave loads and hydrodynamic characteristics. As the maximum stresses on each of the cases are reviewed and compared, the effect of floating breakwater for floating photovoltaic system is checked, and it is confirmed that the size of breakwater has a significant effect on structural responses of the system.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Long-term Variations of Water Quality Parameters in Lake Kyoungpo (경포호에서 수질변수들의 장기적인 변화)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.95-107
    • /
    • 2015
  • In order to identify long-term trends of water quality parameters in Lake Kyeongpo, Mann-Kendall test, Sen's slope estimator and linear regression were applied on data, with 15 parameters from three different sites and rainfall, monitored once in every two months from March to November during 1998~2013. Seasonal variation analysis only used Mann-Kendall test and Sen's slope estimator. Analysis result showed that salinity, transparency and nutrient variables (total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen, ammonia nitrogen) were only parameters having statistically significant trend. In linear regression analysis, salinity (surface and bottom layer of all sites) and transparency (only at site 1), were figured out with statistically significant increasing trend, while in non-parametric statistical method, salinity and transparency in all sites (surface, middle, deep) were figured out with statistically significant increasing trend. Water quality parameters showing statistically significant decreasing trends were dissolved oxygen (surface layer of site 1 and bottom layer of sites 2 and 3), total phosphorus (sites 1 and 2), dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the linear regression analysis and, dissolved oxygen (bottom layer of all sites), total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the non-parametric method. Seasonal trend analysis result showed that salinity, turbidity, transparency and suspended solids in spring, salinity, transparency, nitrate nitrogen and suspended solids in summer and temperature, salinity, transparency and suspended solids in fall were the variables depending on the season with increasing trends. In general, rainfall during the research period showed decreasing trend. The significant reduction trends of nutrients in Lake Kyeongpo were believed to be related to lagoon restoration and water management project run by Gangneung city and under-water wear removal, but further detailed studies are needed to know the exact causes.

Study on Combined Use of Inclination and Acceleration for Displacement Estimation of a Wind Turbine Structure (경사 및 가속도 계측자료 융합을 통한 풍력 터빈의 변위 추정)

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Byung-Jin;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Wind power systems have gained much attention due to the relatively high reliability, good infrastructures and cost competitiveness to the fossil fuels. Advances have been made to increase the power efficiency of wind turbines while less attention has been focused on structural integrity assessment of structural sub-systems such as towers and foundations. Among many parameters for integrity assessment, the most perceptive parameter may be the induced horizontal displacement at the hub height although it is very difficult to measure particularly in large-scale and high-rise wind turbine structures. This study proposes an indirect displacement estimation scheme based on the combined use of inclinometers and accelerometers for more convenient and cost-effective measurements. To this end, (1) the formulation for data fusion of inclination and acceleration responses was presented and (2) the proposed method was numerically validated on an NREL 5 MW wind turbine model. The numerical analysis was carried out to investigate the performance of the propose method according to the number of sensors, the resolution and the available sampling rate of the inclinometers to be used.

A Fundamental Study on Evaluation of Web Crippling Strength of Corroded H-Beams (부식 H형 강재의 복부좌굴강도 추정에 관한 기초적 연구)

  • Kim, In-Tae;Shin, Chang-Hee;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.421-433
    • /
    • 2010
  • The most typical deterioration of steel structures is corrosion damage. However, a method to evaluate residual load-carrying capacity of corroded steel structures is not yet established. It is difficult to check current serviceability and safety of the structures. In this study, compressive tests and finite element analyses were conducted on H-beams with corroded web. Then, the effect of corrosion damage on web crippling strength and evaluation methods of the web crippling strength are studied. Based on the tests, 4 H-beam specimens used in a subway construction site and 9 H-beam specimens with different web-thickness and damaged-height underwent compression-tests. To consider loading and supporting areas in the site, compressive loading was applied in the entire region of the upper and bottom flange in 5 H-beam specimens and applied partially on the regions of the upper and bottom flange in 8 specimens. The finite element analysis of 38 parametric model specimens simulating different corrosion damages was also carried out. From experimental and analytical results, the relationships between corrosion damages in the web and residual web crippling strength are presented. Factors web crippling strength was reduced are formulated by using residual average thickness and the standard deviation of the corroded web thickness. Also, a simple evaluation method of residual web crippling strength was proposed.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.