• 제목/요약/키워드: Parametric Study

검색결과 3,721건 처리시간 0.032초

Design charts for consolidation settlement of marine clays using finite strain consolidation theory

  • Jun, Sang-Hyun;Lee, Jong-Ho;Park, Byung-Soo;Kwon, Hyuk-Jae
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.295-305
    • /
    • 2021
  • In this study, design charts for estimating consolidation settlement are proposed according to finite strain consolidation theory using a nonlinear constitutive relationship equation. Results of parametric sensitivity analysis shows that the final settlement, initial height, and initial void ratio exerted the greatest effect, and the coefficients of the void ratio-effective-stress. Proposed design charts were analyzed for three regions using a representative constitutive relationship equation that enables major dredged-reclaimed construction sites in Korea. The regional design charts can be calculated accurately for the final settlement because it is applied directly to the numerical analysis results, except for reading errors. A general design chart applicable to all marine clays is proposed through correlation analysis of the main parameters. A final self-weight consolidation settlement with various initial void ratios and initial height conditions should be estimated easily using the general design chart and constitutive relationship. The estimated final settlement using the general design chart is similar to the results of numerical analysis obtained using finite strain consolidation theory. Under an overburden pressure condition, design charts for estimating consolidation settlement are proposed for three regions in Korea.

An approach for partial strengthening of circular RC columns using outer steel tube

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.739-749
    • /
    • 2021
  • This paper introduces an improved design equation to evaluate the resisting capacity of circular reinforced concrete (RC) columns partially strengthened with outer steel tube. When RC column members are required to be strengthened according to the change in the loadings considered and/or the deterioration progress in columns, wrapping up RC column with steel circular tube, which takes the form of concrete filled steel tube (CFST), has been popularly considered because of its structural advantage induced from the confinement effect. However, the relatively high construction cost of steel tube is restricting its use to the required region, while deriving the shape of a partial CFST column. To evaluate the resisting capacity of a partial CFST column, numerical analyses need to be performed, and a numerical model proposed in the previous study for the numerical analysis of full CFST columns is used to conduct parametric studies for the introduction of a design equation. The bond-slip effect developed along the interface between the in-filled concrete and the exterior steel tube is taken into consideration and the validity of the numerical model has been established through correlation studies between experimental data and numerical results for partial CFST circular columns. Moreover, parametric studies make it possible to introduce a design equation for determining the optimum length of outer steel tube which produces partial CFST circular columns.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Scan-to-BIM 자동화 기술을 활용한 건축물 단위의 BIM 모델 생성 - 강원소방학교 BIM 모델링 실증을 중심으로 - (BIM Model Generation at Building Level using Automated Scan-to-BIM Process - Focused on Demonstration of BIM Modeling for Gangwon Fire Service Academy -)

  • 박준우;김재홍;김소현;이지민;최창순;정광복;이재욱
    • 한국BIM학회 논문집
    • /
    • 제11권4호
    • /
    • pp.53-62
    • /
    • 2021
  • The successful implementation of Scan-to-BIM automation depends on the entire process from scanning of buildings, including indoor facilities and furniture, to generating BIM models. However, the conventional Scan-to-BIM process requires a lot of time, manpower, and cost for the manual generation of BIM models including indoor objects. To solve this problem, this study applied a Scan-to-BIM automation process using a deep learning model and parametric algorithm to an existing building, Kangwon Fire Service Academy. To improve the accuracy of the BIM model, after object data was extracted from the scan data, the data was corrected according to actual object-specific conditions. As a result, the accuracy of the BIM model created by the proposed Scan-to-BIM automation process was 91% compared to the actual area of the construction drawings. In addition, it was confirmed that the BIM objects were automatically generated for 10 object classes.

Seismic behavior of reinforced concrete column-steel beam joints with and without reinforced concrete slab

  • Tong Li;Jinjie Men;Huan Li;Liquan Xiong
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.417-430
    • /
    • 2023
  • As the key part in the reinforced concrete column-steel beam (RCS) frame, the beam-column joints are usually subjected the axial force, shear force and bending moment under seismic actions. With the aim to study the seismic behavior of RCS joints with and without RC slab, the quasi-static cyclic tests results, including hysteretic curves, slab crack development, failure mode, strain distributions, etc. were discussed in detail. It is shown that the composite action between steel beam and RC slab can significantly enhance the initial stiffness and loading capacity, but lead to a changing of the failure mode from beam flexural failure to the joint shear failure. Based on the analysis of shear failure mechanism, the calculation formula accounting for the influence of RC slab was proposed to estimate shear strength of RCS joint. In addition, the finite element model (FEM) was developed by ABAQUS and a series of parametric analysis model with RC slab was conducted to investigate the influence of the face plates thickness, slab reinforcement diameter, beam web strength and inner concrete strength on the shear strength of joints. Finally, the proposed formula in this paper is verified by the experiment and FEM parametric analysis results.

Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer

  • Chen Wei;Yongbo Shao;Mostafa Fahmi Hassanein;Chuannan Xiong;Hongmei Zhu
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.455-466
    • /
    • 2023
  • To investigate the load bearing capacity of axially preloaded circular hollow section (CHS) stub columns strengthened by carbon fiber reinforced polymer (CFRP), theoretical analysis is carried out. The yield strength and the ultimate strength of a CFRP strengthened preloaded CHS stub column are determined at the yielding of the CHS tube and at the CFRP fracture, respectively. Theoretical models are proposed and corresponding equations for calculating the static strengths, including the yield strength and the ultimate strength, are presented. Through comparison with reported experimental results, the theoretical predictions on the static strengths are proved to be accurate. Through finite element (FE) analyses, parametric studies for 258 models of CFRP strengthened preloaded CHS stub columns are conducted by considering different values of tube diameter, tube thickness, CFRP layer and preloading level. The static strengths of the 258 models predicted from presented equations are proved to be in good agreement with FE simulations when the diameter-to-thickness ratio is less than 90ε2. The parametric study indicates that the diameter and the thickness of the steel tube have great effects on CFRP strengthening efficiency, and the recommended ranges of the diameter and the thickness are proposed.

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

Laser micro-drilling of CNT reinforced polymer nanocomposite: A parametric study using RSM and APSO

  • Lipsamayee Mishra;Trupti Ranjan Mahapatra;Debadutta Mishra;Akshaya Kumar Rout
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.1-18
    • /
    • 2024
  • The present experimental investigation focuses on finding optimal parametric data-set of laser micro-drilling operation with minimum taper and Heat-affected zone during laser micro-drilling of Carbon Nanotube/Epoxy-based composite materials. Experiments have been conducted as per Box-Behnken design (BBD) techniques considering cutting speed, lamp current, pulse frequency and air pressure as input process parameters. Then, the relationship between control parameters and output responses is developed using second-order nonlinear regression models. The analysis of variance test has also been performed to check the adequacy of the developed mathematical model. Using the Response Surface Methodology (RSM) and an Accelerated particle swarm optimization (APSO) technique, optimum process parameters are evaluated and compared. Moreover, confirmation tests are conducted with the optimal parameter settings obtained from RSM and APSO and improvement in performance parameter is noticed in each case. The optimal process parameter setting obtained from predictive RSM based APSO techniques are speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), Air pressure (1 kg/cm2) for Taper and speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), air pressure (3 kg/cm2) for HAZ. From the confirmatory experimental result, it is observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses during laser micro-drilling process of nanocomposites both in individual and multi-objective optimization.

헬리콥터 초기 설계 모델에 대한 민감도 분석 및 매개변수 연구 (A Sensitivity Analysis and Parametric Study for the Establishment of the Helicopter Initial Design Model)

  • 김승범;최종수
    • 한국항공우주학회지
    • /
    • 제43권4호
    • /
    • pp.368-376
    • /
    • 2015
  • 본 논문은 헬리콥터 초기 설계를 위해 수정된 추정식을 적용한 헬리콥터 초기 설계 모델 정립 연구의 응용에 대한 내용으로 헬리콥터 초기 설계의 효율성을 제고하고 개선하고자 하였다. 헬리콥터 설계 시 중량계수 영향성을 확인하고 적정한 중량계수 적용방법을 제시하였으며, 중량계수 및 회전면 하중, 블레이드 개수, 블레이드 종횡비와 같은 주요 매개변수에 대한 민감도 분석과 연관관계에 대해 고찰하였다. 연구 결과, 설계 시 변수에 대한 연관관계 및 민감도의 양을 고려하여 설계 할 헬기 특성을 최적화해야하며, 주요 매개변수들 사이에는 복합적인 연관관계가 존재하므로 설계 시 설계자는 설계 인자들에 대한 신중한 고려가 필요한 것으로 분석되었다.

새로운 FRP-콘크리트 전단부착성능 평가법을 활용한 최적 FRP 규사코팅 조건에 관한 연구 (A study on the optimum condition of FRP coarse-sand coating by using a new testing method for shear bearing capacity of FRP-concrete interface)

  • 이규필;신휴성;김승한
    • 한국터널지하공간학회 논문집
    • /
    • 제13권3호
    • /
    • pp.277-289
    • /
    • 2011
  • 본 연구에서는 압축력을 받는 터널 라이닝 부재 특성에 보다 부합된 조건에서 FRP-콘크리트 접촉면의 전단 저항력을 평가할 수 있는 새로운 시험법을 제안하였으며, 제안 시험법은 기존 시험방법에 비해 시험체 제작과 시험방법이 매우 용이하다. 제안된 시험법을 기반으로 FRP와 콘크리트 복합소재의 전단저항성능을 좌우하는 규사코팅의 최적조건을 도출하기 위한 매개변수 연구를 실시하였다. 다양한 시료에 대한 시험결과를 기존 연구결과와의 비교분석을 통하여 제안 시험법의 타당성을 보였으며, FRP부재와 콘크리트 접촉면의 전단저항을 극대화 시킬 수 있는 효과적인 규사입경 및 밀도에 대한 최적 조건을 제시하였다.