• Title/Summary/Keyword: Parametric Approach

Search Result 724, Processing Time 0.034 seconds

Aerodynamic vibration control theorem by parametric stability analysis

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.105-128
    • /
    • 2024
  • Vibrations in aerodynamic systems can lead to significant structural and performance issues. This paper presents a novel theorem for actively controlling aerodynamic vibrations through parametric stability analysis. The proposed approach models the aerodynamic system as a dynamic system with parametric excitation, allowing for the identification of stable and unstable regions in the parameter space. By strategically adjusting the system parameters, the vibrations can be effectively suppressed, enhancing the overall reliability and performance of the aerodynamic system. The theoretical underpinnings of the theorem are discussed, and the effectiveness of the approach is demonstrated through numerical simulations and experimental validation. The results show the potential of this method for practical implementation in various aerodynamic applications, such as aerospace engineering and wind turbine design.

Development of an Open BIM-Based Korean Traditional House Component Library Using an XML Parametric Information Approach

  • Kim, In-Han;Jin, Jin;Seo, Jong-Cheol;Kim, Kwan-Soo
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.11-18
    • /
    • 2011
  • With the rapid development of computer technology and ongoing destruction of traditional buildings, more and more attention is paid to digital methods for the design and preservation of traditional buildings. Unlike 2D methods, Building Information Modeling (BIM) provides an object-oriented and parametric digital representation way for traditional building components. However, one of the main limitations currently is that parametric information cannot be exchanged between BIM software packages. Therefore each kind of software must have their own parametric library which causes extensive works. In this research, the authors developed an open BIM-based library using an XML parametric approach to solve the above problems, represented traditional components according to an XML schema, and parametrically implemented these XML files in a browser which can be accessed by users for their easy component edit and selection. And then based on the XML file of one component, implemented an Add-on in ArchiCAD for users to parametrically edit and directly utilize. Thus based on these XML files, a browser for users' view and selection purpose and an add-on for users' application purpose were developed. Future research will focus on implementing these XML files in other BIM tools like Revit and Digital Project. If the whole library was to be completed based on this XML approach, an open BIM-based library would be established that all kinds of BIM software users could apply this parametric library for easy modeling of traditional houses.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

Study on Numerical Sensitivity and Uncertainty in the Analysis of Parametric Roll (파라메트릭 횡동요 수치해석의 민감도 및 불확실성에 대한 연구)

  • Park, Dong-Min;Kim, Tae-Young;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.60-67
    • /
    • 2012
  • This study considers the numerical analysis on parametric roll for container ships. As a method of numerical simulation, an impulse-response-function approach is applied in time domain. A systematic study is carried out for the parametric roll of two container ships, particularly observing the sensitivity of computational results to some parameters which can affect the analysis of parametric roll. The parameters to be considered are metacentric height (GM), simulation time window, and the discretization of wave spectrum. Based on the result of parametric roll simulation, numerical sensitivity and uncertainty in computational analysis are discussed.

Development of a Parametric Design System for Membrane Structures (연성 막구조의 파라메트릭 설계 시스템 개발)

  • Choi, Hyun-chul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

A parametric study of the meso-scale modelling of concrete subjected to cyclic compression

  • Rempling, Rasmus;Grassl, Peter
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.359-373
    • /
    • 2008
  • The present parametric study deals with the meso-scale modelling of concrete subjected to cyclic compression, which exhibits hysteresis loops during unloading and reloading. Concrete is idealised as a two-dimensional three-phase composite made of aggregates, mortar and interfacial transition zones (ITZs). The meso-scale modelling approach relies on the hypothesis that the hysteresis loops are caused by localised permanent displacements, which result in nonlinear fracture processes during unloading and reloading. A parametric study is carried out to investigate how aggregate density and size, amount of permanent displacements in the ITZ and the mortar, and the ITZ strength influence the hysteresis loops obtained with the meso-scale modelling approach.

The Evaluation of Relative Management Efficiency of Automobile Companies Using Non-parametric Approach (비모수 검정을 활용한 자동차 기업의 상대적 경영 효율성 평가)

  • Ha, Gui Ryong;Choi, Suk Bong
    • Knowledge Management Research
    • /
    • v.15 no.2
    • /
    • pp.147-164
    • /
    • 2014
  • This paper investigated the efficiency of automobile firms by using several non-parametric approaches. First, using Data Envelopment Analysis (DEA), the paper has investigated the critical factors that determine the relative efficiency of management performance in automobile companies. Second, we examined how the firm size impact on the difference of this efficiency by using Kruskl-Wallis Test. Third, by using Mann-whitney test, we also investigated the difference of the efficiency accoss existence of technological innovation activity. Finally, the paper explored the relationship between technological innovation and management efficiency by using logistic regression model. The findings of this study provided practical information for inefficient automobile firms to find benchmarking firms and strategic position to improve their efficiency. The result also provided theoretical and methodological implications for those who explore factors affecting management efficiencies. Future research directions with the limitation of the study are discussed.

  • PDF

Investigation on the Automatic Tool Mesh Generatio for Sheet Metal Stamping Analysis (박판성형해석을 위한 자동 툴 격자 생성에 관한 연구)

  • 유동진
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.140-151
    • /
    • 2000
  • The finite element mesh approach for tool surface description is applied effectively to analyze sheet metal stamping processes. To improve the mesh quality and the stability of the mesh generation process, a gybrid method based on the grid approach and the Delaunay triangulation is proposed in the present work. In the present study, a general method for the mathematical description of arbitrarily shaped tool surface is proposed by introducing the parametric surface approach. A polynomial function employed to describe the base parametric surface and the boundary curves are defined to describe arbitrary three-dimensional trimmed surfaces. To verify the validity of the proposed method, automatic mesh generation is carried out for some shosen complicated parts including actual automotive panel.

  • PDF

Nonparametric Inference for Accelerated Life Testing (가속화 수명 실험에서의 비모수적 추론)

  • Kim Tai Kyoo
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.242-251
    • /
    • 2004
  • Several statistical methods are introduced 1=o analyze the accelerated failure time data. Most frequently used method is the log-linear approach with parametric assumption. Since the accelerated failure time experiments are exposed to many environmental restrictions, parametric log-linear relationship might not be working properly to analyze the resulting data. The models proposed by Buckley and James(1979) and Stute(1993) could be useful in the situation where parametric log-linear method could not be applicable. Those methods are introduced in accelerated experimental situation under the thermal acceleration and discussed through an illustrated example.