• Title/Summary/Keyword: Parameters Sensitivity

Search Result 2,078, Processing Time 0.026 seconds

The dark-current and X -ray sensitivity measurement of hybrid digital X-ray detector having dielectric layer structure (a-Se 기반의 혼합형 X-선 검출기에서 유전층의 누설전류 저감효과)

  • Seok, Dae-Woo;Park, Ji-Koon;Joh, Jin-Wook;Lee, Dong-Gil;Moon, Chi-Woong;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.31-34
    • /
    • 2002
  • In this paper, the electric properties of amophous selenium multilayer samples has been investigated. In order to develop the hybrid flat-panel digital· X-ray image detector, we measured and analyzed their performance parameters such as the X -ray sensitivity and dark-current for a amophous selenium multilayers X-ray detector with a phosphor layer, The hybrid digital X-ray image detector can be constructed by integrating a phosphor layer (or a scintillative layer) that convert X-ray to a light on a-Se photoconduction mulilayers that convert a light to electrical signal. As results, the dielectric materials such as parylene between the phosphor layer and the top electrode may reduce the dark-current of the samples. Amorphous selenium multilayers having dielectric layer(parylene) has characteristics of low dark-current, high X-ray sensitivity. So we can acquired a enhanced signal to noise ratio. In this paper offer the method can reduce the dark-current in the hybrid X-ray detector.

  • PDF

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

Preliminary Evaluation of a Proposed Marine Ranching Project in Korea (우리 나라 바다목장화 사업의 예비적 경제성 평가)

  • 표희동
    • The Journal of Fisheries Business Administration
    • /
    • v.29 no.2
    • /
    • pp.199-216
    • /
    • 1998
  • An economic appraisal of a proposed marine ranching project is analysed using capital budgeting model such as net present value(NPV) and internal rate of return( IRR) as well as sensitivity analysis and goal seeking model. Of the factors for economic appraisal, direct benefits are to be determined by estimated harvest, prices and costs incurred by catching fishes, and indirect benefits include the additional economic effect of recreational fishing. And judging the worth of these project options depends upon the choice of discount rate of which 8.5% is recommended here. On the basis of estimated production, prices and costs the project is expected to yield NPV=615 million won and IRR=8.8%, which is quite accepted for an economic feasibility, under the first scenario, and NPV= -127 million won and IRR=7.93%, which is rejected, under the second scenario. Sensitivity analysis has been performed by calculating the switching value and sensitivity indicator in respect of the main project parameters. The results suggest that the project NPV and IRR are especially sensitive to fishes(rock fish and other rock fish) prices and fixed costs. Finally goal seeking analysis is carried out in order to reach a desired level of performance like NPV=0 in respect of the amount of hatchery-reared juverniles, the prices and the discount rate.

  • PDF

Sensitivity analysis of satellite-retrieved SST using IR data from COMS/MI

  • Park, Eun-Bin;Han, Kyung-Soo;Ryu, Jae-Hyun;Lee, Chang-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.589-593
    • /
    • 2013
  • Sea Surface Temperature (SST) is the temperature close to the ocean's surface and affects the Earth's atmosphere as an important parameter for the climate circulation and change. The SST from satellite still has biases from the error in specifying retrieval coefficients from either forward modeling or instrumental biases. So in this paper, we performed sensitivity analysis using input parameter of the SST to notice that the SST is most affected among the input parameter. We used Infrared (IR) data from the Communication, Ocean, and Meteorological Satellite (COMS)/Meteorological Imager (MI) from April 2011 to March 2012. We also used the Global Space-based Inter-Calibration System (GSICS) correction to quality of the IR data from COMS. SST was calculated by substituting the input parameters; IR data with or without the GSICS correction. The results of this sensitivity analysis, the SST was sensitive from -0.0403 to 0.2743 K when the IR data were changed by the GSICS corrections.

A Research on the Vibration Characteristics of Vehicle due to Speaker Sound at Low Frequency (저주파 스피커 출력음 대비 차량 진동 특성 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.909-917
    • /
    • 2007
  • Recently the trend of automobile industry is that IQS evaluation index against a sensitivity quality is increasing. To reduce rattle noise due to speaker sound at low frequencies, it is required the advanced investigation of a package tray panel and a door module panel. This paper optimized the design parameters of package tray panel according to the theoretical background about robust design and suggested the design guideline for resonance avoidance and the reduction of vibrational sensitivity considering the excitation frequency of woofer speaker. In addition, it is suggested the design guideline of a door module panel through the sensitivity analysis in case of the speaker excitation. Finally, the design factor analysis of the quality deviation of a mother-car will make it possible to guarantee the stable characteristics of vehicle vibration in the early stage of vehicle development. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Assessment of sensitivity-based FE model updating technique for damage detection in large space structures

  • Razavi, Mojtaba;Hadidi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.261-281
    • /
    • 2020
  • Civil structures may experience progressive deterioration and damage under environmental and operational conditions over their service life. Finite element (FE) model updating method is one of the most important approaches for damage identification in structures due to its capabilities in structural health monitoring. Although various damage detection approaches have been investigated on structures, there are limited studies on large-sized space structures. Thus, this paper aims to investigate the applicability and efficiency of sensitivity-based FE model updating framework for damage identification in large space structures from a distinct point of view. This framework facilitates modeling and model updating in large and geometric complicated space structures. Considering sensitivity-based FE model updating and vibration measurements, the discrepancy between acceleration response data in real damaged structure and hypothetical damaged structure have been minimized through adjusting the updating parameters. The feasibility and efficiency of the above-mentioned approach for damage identification has finally been demonstrated with two numerical examples: a flat double layer grid and a double layer diamatic dome. According to the results, this method can detect, localize, and quantify damages in large-scaled space structures very accurately which is robust to noisy data. Also, requiring a remarkably small number of iterations to converge, typically less than four, demonstrates the computational efficiency of this method.

Determination of optimal accelerometer locations using modal sensitivity for identifying a structure

  • Kwon, Soon-Jung;Woo, Sungkwon;Shin, Soobong
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.629-640
    • /
    • 2008
  • A new algorithm is proposed to determine optimal accelerometer locations (OAL) when a structure is identified by frequency domain system identification (SI) method. As a result, a guideline is presented for selecting OAL which can reflect modal response of a structure properly. The guideline is to provide a minimum number of necessary accelerometers with the variation in the number of measurable target modes. To determine OAL for SI applications effectively, the modal sensitivity effective independence distribution vector (MS-EIDV) is developed with the likelihood function of measurements. By maximizing the likelihood of the occurrence of the measurements relative to the predictions, Fisher Information Matrix (FIM) is derived as a function of mode shape sensitivity. This paper also proposes a statistical approach in determining the structural parameters with a presumed parameter error which reflects the epistemic paradox between the determination of OAL and the application of a SI scheme. Numerical simulations have been carried out to examine the proposed OAL algorithm. A two-span multi-girder bridge and a two-span truss bridge were used for the simulation studies. To overcome a rank deficiency frequently occurred in inverting a FIM, the singular value decomposition scheme has been applied.

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

A Research on the Vibration Characteristics of Vehicle due to Speaker Sound at Low Frequency (저주파 스피커 출력음 대비 차량 진동 특성 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.673-682
    • /
    • 2007
  • Recently the trend of automobile industry is that IQS evaluation index against a sensitivity quality is increasing. To reduce rattle noise due to speaker sound at low frequencies, it is required the advanced technology analysis process of body structure. This paper optimized the design parameters of package tray panel according to the theoretical background about robust design and suggested the design guideline for resonance avoidance and the reduction of vibrational sensitivity considering the excitation frequency of woofer speaker. And this paper described the design process of a door module panel through the sensitivity analysis in case of the door speaker excitation. Finally, the analysis of the quality deviation using mother car is suggested to guarantee the stable characteristics of vehicle vibration in the early stage of vehicle development. These improvements can lead to shortening the time needed to develop better vehicles.

Experimental und Numerical Sensitivity Analyses on Push Pull Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.312-316
    • /
    • 2004
  • Single-well tracer tests, especially push pull tracer tests, are more effective to estimate hydraulic parameters and microbial metabolic activities in terms of duration and cost compared to multi-well tracer tests. However, there are some drawbacks in accuracy, complicated data analysis and uniqueness. These shortages are thought to be derived from the applied conditions which affect mass recovery curve and breakthrough curve. Factors such as extraction rate, resting period, hydraulic conductivity and hydraulic gradient are considered as the major factors determining the mass recovery rate and shape of the breakthrough curve. The results of the sensitivity analysis are summarized as follows: 1) the significant change in concentration of breakthrough curve is obtained when the extraction rate increases. This effect would also be much higher if the hydraulic conductivity is lower; 2) the mass recovery rate decreases with the increase of resting time, and the difference of mass recovery rates for different resting times is inversely proportional to the hydraulic conductivity; 3) the sensitivity values decrease with time. The hydraulic conductivity affects not only the early period, but the later period of the breakthrough curves; 4) The influence of the hydraulic gradient on the breakthrough curves is greater at earlier stage than at later stage. The mass recovery rate is inversely proportional to the hydraulic gradient.

  • PDF