• Title/Summary/Keyword: Parameter estimated optimization

Search Result 88, Processing Time 0.023 seconds

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Drape Simulation Estimation for Non-Linear Stiffness Model (비선형 강성 모델을 위한 드레이프 시뮬레이션 결과 추정)

  • Eungjune Shim;Eunjung Ju;Myung Geol Choi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2023
  • In the development of clothing design through virtual simulation, it is essential to minimize the differences between the virtual and the real world as much as possible. The most critical task to enhance the similarity between virtual and real garments is to find simulation parameters that can closely emulate the physical properties of the actual fabric in use. The simulation parameter optimization process requires manual tuning by experts, demanding high expertise and a significant amount of time. Especially, considerable time is consumed in repeatedly running simulations to check the results of applying the tuned simulation parameters. Recently, to tackle this issue, artificial neural network learning models have been proposed that swiftly estimate the results of drape test simulations, which are predominantly used for parameter tuning. In these earlier studies, relatively simple linear stiffness models were used, and instead of estimating the entirety of the drape mesh, they estimated only a portion of the mesh and interpolated the rest. However, there is still a scarcity of research on non-linear stiffness models, which are commonly used in actual garment design. In this paper, we propose a learning model for estimating the results of drape simulations for non-linear stiffness models. Our learning model estimates the full high-resolution mesh model of drape. To validate the performance of the proposed method, experiments were conducted using three different drape test methods, demonstrating high accuracy in estimation.

Development of Distributed Ecohydrologic Model and Its Application to the Naeseong Creek Basin (분포형 생태수문모형 개발 및 내성천 유역에의 적용)

  • Choi, Daegyu;Kim, In-Hwan;Kim, Jeongsook;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1053-1067
    • /
    • 2013
  • Distributed ecohydrological model which can simulate hydrological components, vegetation and landsurface temperature using practically available input and observed data with minimum parameters is introduced. This model is designed to properly simulate in area with lack of observed data. Parameter estimation and calibration of the model can be carried out with indirectly estimated data (monthly surface runoff by NRCS-CN method and annual actual vaporization by empirical equation) and remote sensing data (NDVI, LST) instead of observed data. We applied this model in the Naeseong creek basin to evaluate the model validity. Firstly, we found the sensitive parameters which largely influence the simulation results by sensitivity analysis, and then hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature were simulated over 10 years (2001 to 2010) using calibrated parameters. Parameters are estimated by optimization method. It is shown that most of grids are well simulated. In the case of streamflow and water temperature, we checked two observed points in the outlet of watershed and it is shown that streamflow and water temperature are properly simulated as well. Hence, it can be shown that this model properly simulate the hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature as well, even though in despite of using limited input data and minimum parameters.

Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation (목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석)

  • Lee, Gi Ha;Yeon, Min Ho;Kim, Young Hun;Jung, Sung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various objective functions, the reproducibility of the hydrograph according to the objective functions was evaluated, and appropriate objective functions were proposed. As the rainfall-runoff model, the storage function model(SFM), which is a lumped hydrologic model used for runoff simulation in the current Korean flood forecasting system, was selected. In order to evaluate the reproducibility of the hydrograph for each objective function, 9 rainfall events were selected for the Cheoncheon basin, which is the upstream basin of Yongdam Dam, and widely-used 7 objective functions were selected for parameter estimation of the SFM for each rainfall event. Then, the reproducibility of the simulated hydrograph using the optimal parameter sets based on the different objective functions was analyzed. As a result, RMSE, NSE, and RSR, which include the error square term in the objective function, showed the highest accuracy for all rainfall events except for Event 7. In addition, in the case of PBIAS and VE, which include an error term compared to the observed flow, it also showed relatively stable reproducibility of the hydrograph. However, in the case of MIA, which adjusts parameters sensitive to high flow and low flow simultaneously, the hydrograph reproducibility performance was found to be very low.

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.

A Study on the Selection of AMC of Curve Number (유출곡선지수의 선행토양함수조건 선정 기준 연구)

  • Kim, Jee-Sang;Ahn, Jaehyun
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.519-535
    • /
    • 2012
  • In order to establish a rainfall-runoff model, calibration of hydrological parameters for the model is very important. Especially, Curve Number(CN), estimated by NRCS method, is a main factor to apply unit hydrograph theory to calculation of peak discharge. For using NRCS method, it is needed selecting AMC because CN is strongly connected with that. In this study, we focus our concern on finding a applicable standard for selecting AMC for CN. For this, three dams which are Boryeong, Habchon, Namgang are selected as target basins to use observed data including rainfall and dam inflow. As a result of this research, it is found that CN must be included as a calibrated parameter to calculate effective rainfall for the rainfall-runoff model. Also, it is preferred to use PWRMSE of HEC-HMS program as a objective function for optimizing hydrological parameters. From the analyzing result of variation of AMC for peak discharge, it is recommended to apply AMC-III to estimation of CN for calculating effective rainfall of design hydrograph.

Optimal Management of Mackerel in Korea: A Maximum Entropy Approach (최대 엔트로피 기법을 이용한 한국 연근해 고등어 최적 관리에 관한 연구)

  • Park, Yunsun;Kwon, Oh-Sang
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.277-306
    • /
    • 2019
  • Mackerel is one of the most widely consumed aquatic products in Korea. Concerns about the depletion of stocks have also arisen as the catch has decreased. The primary purpose of this study is to estimate the mackerel stock and derive the optimal level of catch in Korea. We apply a generalized maximum entropy econometric method to estimate the mackerel growth function, which does not require the steady state assumption. We incorporate a bootstrapping approach to derive the significance levels of parameter estimates. We found that the average ratio of catch to the estimated total stock was less than 30% before the 1990s but exceeded 40% in the 1990s. After 2000, it dropped back to about 36%. This finding indicates that mackerel may have been over-fished in the 1990s, but the government regulations introduced in the 2000s alleviated over-fishing problems. Nevertheless, our dynamic optimization analysis suggests that the total allowable catch may need to be carefully controlled to achieve socially optimal management of resources.

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF