• 제목/요약/키워드: Parameter design criteria

검색결과 120건 처리시간 0.026초

이분적 터널 암반 분류를 위한 정성적 자료의 지구 통계학적 연구 -1. 이론 (A Geostatistical Study Using Qualitative Information for Tunnel Rock Binary Classification 1. Theory)

  • 유광호
    • 한국지반공학회지:지반
    • /
    • 제9권3호
    • /
    • pp.61-66
    • /
    • 1993
  • 본 논문에서는 암반 분류를 위해 물리탐사 결과나 그동안 축적된 시공경험 등의 정성적 자료의 사용을 고려하였다. 터널 설계를 위한 요소(parameter)들이 공간적 상관관계를 갖기 때문에 지구 통계학(Geostatistics)을 이용하였으며, 특히, 비모수적 (non-parametric)방법 중의 하나인 지시 크리깅(indicator kriging) 기법을 사용했다. 최적 분류를 위한 선택 기준으로는 오차에 대응하는 비용(the cost of errors)을 사용했으며, 암반분류는 이분적 분류에 한정하였다. 앞으로, 정량적 데이타가 절대적으로 부족한 터널공사등에서 비교적 많은 양이 존재하는 정성적 데이타의 이용은 절실하며, 이러한 점에서 본 연구가 가지는 의미는 크다.

  • PDF

지능형 대용량 비례유량제어밸브 서보컨트롤러 설계 (Design of Intelligent Servocontroller for Proportional Flow Control Solenoid Valve with Large Capacity)

  • 정규홍
    • 유공압시스템학회논문집
    • /
    • 제8권3호
    • /
    • pp.1-7
    • /
    • 2011
  • As the technologies of electronic device have advanced these days, most of mechanical systems are designed with electronic control unit to take advantage of control parameter adaption to operating conditions and firmware flexibilities as well. On-board diagnosis, which detects the system malfunction and identifies potential source of error with its own diagnostic criteria, and fail-safe that can switch the mode of operation in view of recognized error characteristics enables easy maintenance and troubleshooting as well as system protection. This paper dealt with the development of diagnosis and fail-safe function for proportional flow control valve. All type of errors related to valve control system components are investigated and assigned to a specific hexadecimal codes. Cumulative error detection algorithm is applied in order for the sensitivity and reliability to be appropriate. Embedded simulator which runs simultaneously with system program provides the virtual error simulation environment for expeditious development of error detection algorithm. The diagnosis function was verified both with solenoid valve and embedded simulator test and it will enhance the valve control system monitoring function.

세라믹 촉매 담체의 내구 설계 기준에 대한 실험 및 수치해석의 비교 (Comparison of Experimental and Numerical Analysis for Durability Design Criteria in Ceramic Catalyst Substrate)

  • 백석흠;조석수
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.58-66
    • /
    • 2010
  • This study examines thermal safety on three-way catalyst that dominates 70 % among whole exhaust gas purification device in 2003. Three-way catalyst durability in the Korea requires 5 years/80,000 km in 1988 but require 10 years/120,000 km after 2002. Three-way catalyst durability in the USA requires 7 years/120,000 km but require 10 years/160,000 km after 2004. Three-way catalyst maintains high temperature in interior domain but maintains low temperature on outside surface. Therefore this device shows tensile stress on outside surface. Temperature distribution of three-way catalyst was acquired by thermal flow analysis for predicted thermal flow parameter. Thermal stress analysis for three-way catalysis was performed based on this temperature distribution. Thermal safety of three-way catalyst was estimated by power law dynamic fatigue life estimation and strength reduction methods for thermal stress.

Multi-response optimization for milling AISI 304 Stainless steel using GRA and DFA

  • Naresh, N.;Rajasekhar, K.
    • Advances in materials Research
    • /
    • 제5권2호
    • /
    • pp.67-80
    • /
    • 2016
  • The objective of the present work is to optimize process parameters namely, cutting speed, feed rate, and depth of cut in milling of AISI 304 stainless steel. In this work, experiments were carried out as per the Taguchi experimental design and an $L_{27}$ orthogonal array was used to study the influence of various combinations of process parameters on surface roughness (Ra) and material removal rate (MRR). As a dynamic approach, the multiple response optimization was carried out using grey relational analysis (GRA) and desirability function analysis (DFA) for simultaneous evaluation. These two methods are considered in optimization, as both are multiple criteria evaluation and not much complicated. The optimum process parameters found to be cutting speed at 63 m/min, feed rate at 600 mm/min, and depth of cut at 0.8 mm. Analysis of variance (ANOVA) was employed to classify the significant parameters affecting the responses. The results indicate that depth of cut is the most significant parameter affecting multiple response characteristics of GFRP composites followed by feed rate and cutting speed. The experimental results for the optimal setting show that there is considerable improvement in the process.

Neutron dose rate analysis of the new CONSTOR® storage cask for the RBMK-1500 spent nuclear fuel

  • Narkunas, Ernestas;Smaizys, Arturas;Poskas, Povilas;Naumov, Valerij;Ekaterinichev, Dmitrij
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1869-1877
    • /
    • 2021
  • This paper presents the neutron dose rate analysis of the new CONSTOR® RBMK-1500/M2 storage cask intended for the spent nuclear fuel storage at Ignalina Nuclear Power Plant in Lithuania. These casks are designed to be stored in a new "closed" type interim storage facility, with the capacity to store up to 202 CONSTOR® RBMK-1500/M2 casks. In 2016 y, the "hot trials" of this new facility were conducted and 10 CONSTOR® RBMK-1500/M2 casks loaded with the spent nuclear fuel were transported to the dedicated storage places in this facility. During "hot trials", the dose rate measurements of the CONSTOR® RBMK-1500/M2 casks were performed as the dose rate is one of the critical parameter to control and it must be below design (and safety) criteria. Therefore, having the actual data of the spent nuclear fuel characteristics, the neutron dose rate modeling of the CONSTOR® RBMK-1500/M2 cask loaded with this particular fuel was also performed. Neutron dose rate modeling was performed using MCNP 5 computer code with very detailed geometrical representation of the cask and the fuel. The obtained modeling results were compared with the measurement results and it was revealed, that modeling results are generally in good agreement with the measurements.

콘크리트 압축강도 및 하중비에 따른 CFT기둥의 내화성능에 관한 연구 (The Study on the Fire Resistance Performance of the CFT (Concrete filled Tube) Column According to the Concrete Compressive Strength and Load Ratio)

  • 조경숙;김흥열;김형준;권인규
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.44-51
    • /
    • 2010
  • 본 연구의 목적은 성능적 내화설계를 기반으로 한 CFT 구조의 내화성능 설계기술 개발을 최종목표로 CFT 구조의 실증적 실험을 통한 내화성능을 도출하고 내부 콘크리트 압축강도와 하중비를 변수로 하여 수축량과 시험체 내부 온도를 측정하여 내화성능을 도출하여 성능설계를 위한 기초 자료로 활용하고자 하는데 있다. KS F 2257-1과 7의 기준에 따라 CFT 각형 기둥에 24MPa, 40MPa, 하중비 0.9, 0.6, 0.2를 재하하여 내화성능기준에 따른 결과 하중비 변화는 24MPa의 경우 하중비가 0.3 감소시 약 73분의 내화성능 향상효과가 있는 것으로 나타났다. 40MPa은 하중비 0.6, 0.2의 경우 내화성능시간은 31분, 180분으로 나타났다. 시험체 내부 콘크리트 강도 변화에 따른 내화성능평가 결과 강도가 증가할수록 내화성능은 감소하는 것으로 나타났다.

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

조합식(組合式) 정백(精白)시스템의 설계(設計) 및 작동인자(作動因子)에 관(關)한 연구(硏究)(I) -분풍(噴風) 연삭식(硏削式) 정미기(精米機)의 설계기준(設計基準) 설정(設定)- (A study on Design and Operational Factors of Rice Whitening Systems Consisting of Abrasive and Frictional whiteners -Design Criteria of Aerated-Abrasive Whitener-)

  • 이종환;노상하;고학균
    • Journal of Biosystems Engineering
    • /
    • 제12권1호
    • /
    • pp.20-30
    • /
    • 1987
  • Major rice grain losses both in quality and in quantity are incurred in the whitening process which is indispensable in the milling process. Rice whitening it performed by two different whitening actions known as abrasive and frictional. In Korea, abrasive-type whiteners equipped with a emery-stone roller have been adopted in the whitening system in large scale milling plants, but not in customary small scale. However, researches on this type whitener have rarely been conducted in Korea. This study was attempted to establish design criteria or a modified abrasive-type whitener which is aerated with blower. The factors considered in this study were three levels of feedscrew pitch (20, 27, 34 mm) and three levels of clearance(11, 13, 15 mm) between surfaces or emery-stone roller and screen and two levels of moisture content (14.5%, 15.7%, w.b.) of brown rice. Also, the effect of aeration on whitening performance was examined, and a system performance consisting of one pass in the aerated abrasive-type and two passes in the existing friction type was compared with the performance of the existing whitening system consisting of three passes in friction type only. The latter system is prevailed in customery small milling plants. The results of this study are summarized as follows. 1. The interactions between feed-screw pitch and chamber clearance of the aerated abrasive-type whitener had great effect on the performance of the machine. When the value of a nondimensional parameter, $C^2/(P{\cdot}d_p)$, expressing the relations between feed-screw pitch, P, and chamber clearance, C, ranged from 0.40 to 0.45, the performance of the aerated abrasive-type whitener was the best. 2. Aeration to the abrasive-type whitener gave positive effect on milled and head rice recoveries. 3. The whitening system involving the aerated abrasive-type whitener, which has appropriate feed-screw pitch and chamber clearance as described in item 1 above, produced more milled and head rice recoveries by about 1.5% and 2.0%, respectively, than the existing frictional whitening system. The former also consumed less electricity by about 10% (0.9KwH/1000kg).

  • PDF

The Need for Weight Optimization by Design of Rolling Stock Vehicles

  • Ainoussa, Amar
    • International Journal of Railway
    • /
    • 제2권3호
    • /
    • pp.124-126
    • /
    • 2009
  • Energy savings can be achieved with optimum energy consumptions, brake energy regeneration, efficient energy storage (onboard, line side), and primarily with light weight vehicles. Over the last few years, the rolling stock industry has experienced a marked increase in eco-awareness and needs for lower life cycle energy consumption costs. For rolling stock vehicle designers and engineers, weight has always been a critical design parameter. It is often specified directly or indirectly as contractual requirements. These requirements are usually expressed in terms of specified axle load limits, braking deceleration levels and/or demands for optimum energy consumptions. The contractual requirements for lower weights are becoming increasingly more stringent. Light weight vehicles with optimized strength to weight ratios are achievable through proven design processes. The primary driving processes consist of: $\bullet$ material selection to best contribute to the intended functionality and performance $\bullet$ design and design optimization to secure the intended functionality and performance $\bullet$ weight control processes to deliver the intended functionality and performance Aluminium has become the material of choice for modern light weight bodyshells. Steel sub-structures and in particular high strength steels are also used where high strength - high elongation characteristics out way the use of aluminium. With the improved characteristics and responses of composites against tire and smoke, small and large composite materials made components are also found in greater quantities in today's railway vehicles. Full scale hybrid composite rolling stock vehicles are being developed and tested. While an "overdesigned" bodyshell may be deemed as acceptable from a structural point of view, it can, in reality, be a weight saving missed opportunity. The conventional pass/fail structural criteria and existing passenger payload definitions promote conservative designs but they do not necessarily imply optimum lightweight designs. The weight to strength design optimization should be a fundamental design driving factor rather than a feeble post design activity. It should be more than a belated attempt to mitigate against contractual weight penalties. The weight control process must be rigorous, responsible, with achievable goals and above all must be integral to the design process. It should not be a mere tabulation of weights for the sole-purpose of predicting the axle loads and wheel balances compliance. The present paper explores and discusses the topics quoted above with a view to strengthen the recommendations and needs for the weight optimization by design approach as a pro-active design activity for the rolling stock industry at large.

  • PDF

Seismic response estimation of steel buildings with deep columns and PMRF

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel E.;Gaxiola-Camacho, Jose R.;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.471-495
    • /
    • 2014
  • The responses of steel buildings with perimeter moment resisting frames (PMRF) with medium size columns (W14) are estimated and compared with those of buildings with deep columns (W27), which are selected according to two criteria: equivalent resistance and equivalent weight. It is shown that buildings with W27 columns have no problems of lateral torsional, local or shear buckling in panel zone. Whether the response is larger for W14 or W27 columns, depends on the level of deformation, the response parameter and the structural modeling under consideration. Modeling buildings as two-dimensional structures result in an overestimation of the response. For multiple response parameters, the W14 columns produce larger responses for elastic behavior. The axial load on columns may be significantly larger for the buildings with W14 columns. The interstory displacements are always larger for W14 columns, particularly for equivalent weight and plane models, implying that using deep columns helps to reduce interstory displacements. This is particularly important for tall buildings where the design is usually controlled by the drift limit state. The interstory shears in interior gravity frames (GF) are significantly reduced when deep columns are used. This helps to counteract the no conservative effect that results in design practice, when lateral seismic loads are not considered in GF of steel buildings with PMRF. Thus, the behavior of steel buildings with deep columns, in general, may be superior to that of buildings with medium columns, using less weight and representing, therefore, a lower cost.