• Title/Summary/Keyword: Parallell Computation

Search Result 3, Processing Time 0.018 seconds

Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

Parallel Computation Algorithm of Gauss Elimination in Power system Analysis (전력계통의 자코비안행렬 가우스소거의 병렬계산)

  • Suh, Eui-Suk;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.163-166
    • /
    • 1993
  • This paper describes an parallell computing algorithm in Gauss elimination of Jacobian matrix to large-scale power system. The structure of Jacobian matrix becomes different according to ordering method of buses. In sequential computation buses are ordered to minimize the number of fill-in in the triangulation of the Jacobian matrix. The proposed method using ND(nested dissection) ordering develops the parallelism in the Gauss elimination to have balance of computing load among processes and each processor uses the sequential computation method to preserve the sparsity of matrix.

  • PDF

Domain Decomposition using Substructuring Method and Parallel Comptation of the Rigid-Plastic Finite Element Analysis (부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산)

  • Park, Keun;Yang, Dong-Yol
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.246-249
    • /
    • 1998
  • In the present study, domain decomposition using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. In order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method, the program is easily parallelized using the Parallel Virtual Machine(PVM) library on a workstation cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various domain decompositions and number of processors. Comparing the results, it is concluded that the improvement of performance is obtained through the proposed method.

  • PDF