• Title/Summary/Keyword: Parallel-flow type

Search Result 146, Processing Time 0.027 seconds

Analysis of Performance Characteristics in the Counter and Parallel Type Plate Evaporator with Operating Methods (대향류와 평행류형 판형 증발기에서 운전방식에 따른 성능특성 분석)

  • Bae, Kyung-Jin;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • The analysis of performance characteristics was carried out in the plate type evaporator with counter and parallel flow. To investigate performance of evaporator with water inlet temperature and refrigerant mass flow rate were changed. As a result, when the inlet temperature of water is $8^{\circ}C$, capacity of parallel flow evaporator higher than counter flow is 0.35%. But as the inlet temperature of water rises from $8^{\circ}C$ to $16^{\circ}C$, capacity of counter flow type evaporator higher than parallel flow type is 0.12%, 0.27%, 1.1%, 1.6%, respectively. The findings showed that counter flow type evaporator has a larger capacity than those that were parallel flow type evaporator. As the refrigerant mass flow rate rises, capacity and pressure drop increases in the counter and parallel flow type evaporator.

The Influences of the Refrigerant Adulteration by an Absorbent on the Cooling Capacity and COP of the Absorption Chiller (흡수식 냉동기에서 흡수액이 증발기로 혼입시 냉각용량과 성능계수에 미치는 영향)

  • Park, Chan-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.753-760
    • /
    • 2006
  • The purpose of the present work is to investigate the influence of the refrigerant adulteration by LiBr solution on the cooling capacity and COP for three different types of abso게tion chillers: a single-effect type, a series-flow double-effect type and a parallel-flow with double-effect type. A simulation program has been prepared for the cyclic analysis of absorption chillers. With some assumptions, the calculations have been performed by solving the mass balance equation, energy balance equation and the state equation simultaneously. The range of the LiBr concentration of refrigerant was 0% to 20% in the present study. For the single-effect absorption chiller, the maximum decrease in the cooling capacity was 10% at the 20% of LiBr concentration. For the double-effect chiller, the capacity was decreased by 11.1% for the parallel-flow type and the series-flow type. Also, the COP was reduced by 3.0% in single-effect, 2.8% in series-flow type (SR=0.4) and 2.3% in parallel-flow type.

The Experimental Study on Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Oscillating Heat Pipe (열전소자와 PF Type 진동형 히트파이프를 이용한 냉.난방기에 관한 연구)

  • 김종수;임용빈;조원호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.741-747
    • /
    • 2004
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type oscillating heat pipe with R-142b as a work ing fluid. The experiment was performed for 16 thermoelectric modules (6 A/15 V, size: 40${\times}$40${\times}$4 mm), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc) . Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type oscillating heat pipe were 30% by volume and 30%, respectively. The maximum cooler/heater capacity were 479W (COP : 0.47) and 630W (COP : 0.9), respectively.

A Development of Distributed Parallel Processing algorithm for Power Flow analysis (전력 조류 계산의 분산 병렬처리기법에 관한 연구)

  • Lee, Chun-Mo;Lee, Hae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.134-140
    • /
    • 2001
  • Parallel processing has the potential to be cost effectively used on computationally intense power system problems. But this technology is not still available is not only parallel computer but also parallel processing scheme. Testing these algorithms to ensure accuracy, and evaluation of their performance is also an issue. Although a significant amount of parallel algorithms of power system problem have been developed in last decade, actual testing on processor architectures lies in the beginning stages. This paper presents the parallel processing algorithm to supply the base being able to treat power flow by newton's method by the distributed memory type parallel computer. This method is to assign and to compute teared blocks of sparse matrix at each parallel processors. The testing to insure accuracy of developed method have been done on serial computer by trying to simulate a parallel environment.

  • PDF

Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Pulsating Heat Pipe

  • Kim Jeong-Hoon;Im Yong-Bin;Lee Seong-Ho;Lee Euk-Soo;Kim Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.217-224
    • /
    • 2005
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type pulsating heat pipe with R-142b as a working fluid. The experiment was performed for 16 thermoelectric modules (6A/15V, size: $40\times40\times4mm$), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc.). Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type pulsating heat pipe were $30\%$ by volume and $30^{\circ}$, respectively. The maximum cooler/heater capacity were 479 W (COP: 0.47) and 630 W (COP: 0.9), respectively.

Computer simulation for the performance analysis of automobile air conditioning system (자동차용 에어컨 시스템의 성능해석을 위한 컴퓨터 시뮬레이션)

  • 이건호;유정열;정종대;최규환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.202-216
    • /
    • 1998
  • A computer simulation for the performance analysis of automobile air conditioning components is carried out for the various operating conditions. The automobile air conditioning system consists of laminated type evaporator, swash plate type compressor, parallel flow type condenser, externally equalized thermostatic expansion valve and receiver drier. The overall heat transfer coefficient and the pressure drop in laminated type evaporator were obtained through experiments. In parallel flow type condenser, the performance analysis computer program using the empirical equation for heat transfer coefficient has been developed and the results are compared with experimental results. A model for matching the performance analysis programs of respective components .of automobile air conditioning system is introduced. Further, the effects of varying condenser size and refrigerant charge on the performance of automobile air conditioning system are discussed clearly.

  • PDF

Analysis of Absorption Refrigeration Cycles to Utilize Treated Sewage (하수처리수이용 흡수식냉동사이클의 해석)

  • Lee, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.288-298
    • /
    • 1996
  • The gas-fired absorption refrigeration system to utilize treated sewage is available for environmental protection and energy conservation. Simulation analysis on the double-effect absorption refrigeration cycles with parallel or series flow type has been performed. The working fluid is Lithium Bromide and water solution. The main purpose of this study is evaluating the possibilities of effective utilization of treated sewage as a cooling water for the absorber and condenser. The efficiency of a couple of cycles has been studied and simulation results show that higher coefficient of performance could be obtained for parallel flow type. The other purpose of the present study is to determine the optimum designs and operating conditions based on the operating constraints and the coefficent of performance in the paralledl flow type.

  • PDF

Cycle Analysis of Air-Cooled Double-Effect Absorption Cooling System with Parallel Flow Type (공랭형 병렬방식 2중효용 흡수식 냉방시스템의 사이클 해석)

  • 오명도;김선창;김영인;이홍원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2099-2109
    • /
    • 1993
  • A gas-fired 4RT absorption heat pump was designed as an air-conditioner for domestic use during the summer. The absorption heat pump is air-cooled. double-effect, $LiBr-H_{2}O$ system with parallel flow type. The performance of the absorption heat pump in the cooling mode of operation was investigated through cycle modeling and simulation to obtain the system characteristics with parameter changes. System parameters considered in this analysis were the inlet temperature of cooling air to the absorber, the working solution concentrations, the ratio of the amount of the weak solution from the absorber, and the LTD's of each heat exchange component. The optimum designs and operating conditions were determined based on the operating constraints and the coefficient of performance.

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

A Study on the Performance Characteristics of Fin-type Heat Exchanger for the Automobile Air-Conditioners (자동차 공조용 핀형 열교환기의 성능특성에 관한 연구)

  • 홍경한;전상신;이승재;박찬수;권일욱;김재열;김병철;하옥남
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.100-105
    • /
    • 2004
  • Fin-tube type(Fin-type) heat exchanger has been tested in order to replace the heat exchanger of parallel flow type(P.F -type) which is now widly used in automobile air conditioning system The following conclusions are drawn by the comparison of the characteristics of the heat exchangers. Evaporator and condenser capacities and COP(Coefficience of performance) were varied as with the compressor speed, outdoor air temperature and air flow rate changed, which much influenced on the characteristics of the air conditioning system Evaporator and condenser capacities were increased with increasing compressor speed and outdoor air temperature. Evaporator and condenser pressures of Fin-type were decreased by 7% and 5% respectively compared with those of P.F-type. The COP of Fin-type was decreased with increasing outdoor air temperature and compressor speed. The COP of P.F-type was decreased by 14% compared with that of Fin-type.