• Title/Summary/Keyword: Parallel shunt

Search Result 70, Processing Time 0.024 seconds

An S-Band Multifunction Chip with a Simple Interface for Active Phased Array Base Station Antennas

  • Jeong, Jin-Cheol;Shin, Donghwan;Ju, Inkwon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • An S-band multifunction chip with a simple interface for an active phased array base station antenna for next-generation mobile communications is designed and fabricated using commercial 0.5-${\mu}m$ GaAs pHEMT technology. To reduce the cost of the module assembly and to reduce the number of chip interfaces for a compact transmit/receive module, a digital serial-to-parallel converter and an active bias circuit are integrated into the designed chip. The chip can be controlled and driven using only five interfaces. With 6-bit phase shifting and 6-bit attenuation, it provides a wideband performance employing a shunt-feedback technique for amplifiers. With a compact size of 16 $mm^2$ ($4mm{\times}4mm$), the proposed chip exhibits a gain of 26 dB, a P1dB of 12 dBm, and a noise figure of 3.5 dB over a wide frequency range of 1.8 GHz to 3.2 GHz.

Training an Artificial Neural Network (ANN) to Control the Tap Changer of Parallel Transformers for a Closed Primary Bus

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Voltage control is an essential part of the electric energy transmission and distribution system to maintain proper voltage limit at the consumer's terminal. Besides the generating units that provide the basic voltage control, there are many additional voltage-controlling agents e.g., shunt capacitors, shunt reactors, static VAr compensators, regulating transformers mentioned in [1], [2]. The most popular one, among all those agents for controlling voltage levels at the distribution and transmission system, is the on-load tap changer transformer. It serves two functions-energy transformation in different voltage levels and the voltage control. Artificial Neural Network (ANN) has been realized as a convenient tool that can be used in controlling the on load tap changer in the distribution transformers. Usage of the ANN in this area needs suitable training and testing data for performance analysis before the practical application. This paper briefly describes a procedure of processing the data to train an Artificial Neural Network (ANN) to control the tap changer operating decision of parallel transformers for a closed primary bus. The data set are used to train a two layer ANN using three different neural net learning algorithms, namely, Standard Backpropagation [3], Bayesian Regularization [4] and Scaled Conjugate Gradient [5]. The experimental results are presented including performance analysis.

  • PDF

Simultaneous Quench Analysis of a Three-Phase 6.6 kV Resistive SFCL Based on YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 항형 초전도 한류기의 동시Quench 분석)

  • Sim J;Kim H. R;Hyun O. B
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • We fabricated a resistive type superconducting fault current limiter (SFCL) of 3-phase $6.6 kV_{rms}$ / rating, based on YBCO thin films grown on sapphire substrates with a diameter off inch. Each element of the SFCL was designed to have the rated voltage of $600 V_{rms}$ $/35A_{rms}$. The elements produced a single phase with 8${\times}$6 components connected in series and parallel. In addition, a NiCr shunt resistor of 23 $\Omega$ was connected in parallel to each of them for simultaneous quenches between the elements. Prior to investigating the performance of the 3 phase SFCL, we examined the quench characteristics for 8 elements connected in series. For all elements, simultaneous quenches and equal voltage distribution within 10% deviation from the average were obtained. Based on these results, performance of the SFCL for single line-to-ground faults was investigated. The SFCL successfully limited the fault current of $10 kA_{ rms}$ below 816 $A_{peak}$ within 0.12 msec right after the fault occurred. During the quench process, average temperature of all components did not exceed 250 K, and the SFCL was totally safe during the whole operation.

  • PDF

Enhancement of Power Rating for the Resistive Fault Current Limiter (병렬우선 직렬연결된 YBCO박막형 초전도 한류기의 용량증대)

  • Park K.B.;LEE B.W.;Kang J.S.;Oh I.S.;hyun O.B.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.806-808
    • /
    • 2004
  • The series and parallel connection is essential for increasing power ratings of resistive type for fault current limiters. To increase voltage class, components are connected in series and to increase current level to the nominal value, they are connected in parallel. There are two ways to connect components in series and parallel. First, connected in series and then the module connects to the parallel. Second, connected in parallel and the module connects to the series. We have studied for the two ways. In this paper, we particularly investigated way to connect components in parallel first This way has the advantage of inducing effective simultaneous quench without any other devices, for example, the thing which is inducing magnetic field to the limiting and shunt resistors. And also we studied for the endurance of component which is patterned to the bi-spiral for prospective fault current. It is very important to understand this, because SFCL will use as the only device to decrease burden of circuit breaker. As experimental results, limiting component patterned to bi-spiral endures fault current up to 30kA and it works well, in parallel to series connection,

  • PDF

Three-Phase Reference Current Generator Employing with Kalman Filter for Shunt Active Power Filter

  • Hasim, Ahmad Shukri Abu;Ibrahim, Zulkifilie;Talib, Md. Hairul Nizam;Dardin, Syed Mohd. Fairuz Syed Mohd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.151-160
    • /
    • 2017
  • This paper presents a new technique of reference current generator based on Kalman filter (KF) estimator for three-phase shunt active power filter (APF). The stationary reference frame (d-q algorithm) is used to transform the load currents into DC component. The harmonics of load currents are extracted and the three-phase reference currents are generated using KF estimator. The work is simulated using Matlab/Simulink platform. To validate the simulation results, an experimental test-rig have been perform using real-time control dSPACE DS1104. In addition, hysteresis current control was used to generate the switching signal for the correction of the harmonics in the system. The non-linear load were constructed with three-phase rectifier which connected in series with inductor and parallel with resistor and capacitor. The results shows that the new technique of shunt APF embedded with KF is proven to eliminate the harmonics created by the non-linear load with some improvement on the total harmonics distortion (THD).

Voltage Control Strategy of new 3-phase Line-Interactive UPS System using AC Line Reactor and Parallel-Series Active Filter (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 Line-Interactive UPS 시스템의 전압제어 방식)

  • Ji, Jun-Keun;Kim, Jang-Hwan;Sul, Seung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.538-546
    • /
    • 2007
  • A new 3-phase line-interactive UPS(Uninterruptible Power Supply) system with parallel-series active power-line conditioning capability using AC line reactor and two four-leg PWM VSCs(Voltage Source Converters) was introduced recently. In this paper, the strategy of voltage control in suggested UPS system is explained. The objective of proposed voltage controllers in parallel(shunt) and series PWM VSC is to guarantee satisfactory characteristics in steady state and transient state. Therefore the experimental results to prototype UPS system having power rating of 60kVA is shown to prove the verification of voltage control strategy.

Fabrication and Test of the 3.8 ㎸ Resistive SFCL Based on YBCO Films (3.8 ㎸급 7직렬 저항형 고온초전도한류기의 제작 및 시험)

  • 심정욱;김혜림;현옥배;박권배;이방욱;강종성;오일성
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.136-140
    • /
    • 2004
  • We fabricated and tested a resistive superconducting fault current limiters (SFCL) operated at 3.8 ㎸ based on YBCO thin films. The SFCL was composed of 7 components connected in series. Each component was designed to be capable of current limiting at 600 V, and has a SiC shunt resistor ( $R_{s}$) of 40 Ω in Parallel. Short circuit tests were carried out fur 0 and 90 degree faults lasting fur 5 cycles. The test results showed that the 7 components were quenched simultaneously under the safe quenches and evenly shared the applied voltage. The SFCL successfully suppressed the fault currents below 94 $A_{peak}$ within the quarter cycle after fault.t.t.

  • PDF

Analysis of Quench Characteristics according to increment of turn number of a reactor and shunt resistors of the Matrix-type Superconductor Fault Current Limiter (매트릭스형 초전도 전류제한기의 리액터의 턴수 및 션트저항 증가에 따른 퀜치특성 분석)

  • Lee, Ju-Hyoung;Oh, Geun-Gon;Jung, Su-Bok;Park, Hyoung-Min;Cho, Young-Sun;Jung, Byoung-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.332-334
    • /
    • 2008
  • The matrix-type superconducting fault current limiter (SFCL) using YBCO thin film consists of the trigger and current-limiting parts. We fabricated the matrix-type SFCL with the integrated current limiting modules. we carried out the experiment of matrix-type SFCL with the integrated current limiting modules connected in series or parallel. We saw current characteristics due to ratio of change the shunt resistance and turns. We confirmed that the difference of critical current between superconducting units was decreased by increment of current flowing into the reactor which applied the magnetic field into the superconducting units..

  • PDF

OPF with Environmental Constraints with Multi Shunt Dynamic Controllers using Decomposed Parallel GA: Application to the Algerian Network

  • Mahdad, B.;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2009
  • Due to the rapid increase of electricity demand, consideration of environmental constraints in optimal power flow (OPF) problems is increasingly important. In Algeria, up to 90% of electricity is produced by thermal generators (vapor, gas). In order to keep the emission of gaseous pollutants like sulfur dioxide (SO2) and Nitrogen (NO2) under the admissible ecological limits, many conventional and global optimization methods have been proposed to study the trade-off relation between fuel cost and emissions. This paper presents an efficient decomposed Parallel GA to solve the multi-objective environmental/economic dispatch problem. At the decomposed stage the length of the original chromosome is reduced successively and adapted to the topology of the new partition. Two subproblems are proposed: the first subproblem is related to the active power planning to minimize the total fuel cost, and the second subproblem is a reactive power planning design based in practical rules to make fine corrections to the voltage deviation and reactive power violation using a specified number of shunt dynamic compensators named Static Var Compensators (SVC). To validate the robustness of the proposed approach, the algorithm proposed was tested on the Algerian 59-bus network test and compared with conventional methods and with global optimization methods (GA, FGA, and ACO). The results show that the approach proposed can converge to the near solution and obtain a competitive solution at a critical situation and within a reasonable time.

The Effect of Series and Shunt Redundancy on Power Semiconductor Reliability

  • Nozadian, Mohsen Hasan Babayi;Zarbil, Mohammad Shadnam;Abapour, Mehdi
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1426-1437
    • /
    • 2016
  • In different industrial and mission oriented applications, redundant or standby semiconductor systems can be implemented to improve the reliability of power electronics equipment. The proper structure for implementation can be one of the redundant or standby structures for series or parallel switches. This selection is determined according to the type and failure rate of the fault. In this paper, the reliability and the mean time to failure (MTTF) for each of the series and parallel configurations in two redundant and standby structures of semiconductor switches have been studied based on different failure rates. The Markov model is used for reliability and MTTF equation acquisitions. According to the different values for the reliability of the series and parallel structures during SC and OC faults, a comprehensive comparison between each of the series and parallel structures for different failure rates will be made. According to the type of fault and the structure of the switches, the reliability of the switches in the redundant structure is higher than that in the other structures. Furthermore, the performance of the proposed series and parallel structures of switches during SC and OC faults, results in an improvement in the reliability of the boost dc/dc converter. These studies aid in choosing a configuration to improve the reliability of power electronics equipment depending on the specifications of the implemented devices.