• Title/Summary/Keyword: Parallel routing algorithm

Search Result 42, Processing Time 0.017 seconds

Cycle Property in the (n,k)-star Graph ((n,k)-스타 그래프의 사이클 특성)

  • Chang, Jung-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1464-1473
    • /
    • 2000
  • In this paper, we analyze the cycle property of the (n,k)-star graph that has an attention as an alternative interconnection network topology in recent years. Based on the graph-theoretic properties in (n,k)-star graphs, we show the pancyclic property of the graph and also present the corresponding algorithm. Based on the recursive structure of the graph, we present such top-down approach that the resulting cycle can be constructed by applying series of "dimension expansion" operations to a kind of cycles consisting of sub-graphs. This processing naturally leads to such property that the resulting cycles tend to be integrated compactly within some minimal subset of sub-graphs, and also means its applicability of another classes of the disjoint-style cycle problems. This result means not only the graph-theoretic contribution of analyzing the pancyclic property in the underlying graph model but also the parallel processing applications such a as message routing or resource allocation and scheduling in the multi-computer system with the corresponding interconnection network.

  • PDF

WDM/TDM-Based Channel Allocation Methodology in Optical Network-on-Chip (광학 네트워크-온-칩에서 WDM/TDM 기반 채널 할당 기법)

  • Hong, Yu Min;Lee, Jae Hoon;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.40-48
    • /
    • 2015
  • An optical network-on-chip(ONoC) architecture is emerging as a new paradigm for solving on-chip communication bottleneck. Recent studies on ONoC have been focusing on supporting the parallel transmission and avoiding path collisions using wavelength division multiplexing(WDM). However, since the maximum number of wavelengths, which a single waveguide can accommodate is limited by crosstalk and insertion loss. Therefore previous WDM studies based on incrementing the number of different wavelengths according to the number of nodes would be infeasible due to the implementation complexity. To solve such problems, we combined time division multiplexing(TDM) and wavelength-routed ONoC, along with an optimized channel allocation algorithm, which can minimize the number of extra wavelength channels and latency caused by combining TDM scheme.