• 제목/요약/키워드: Parallel plate beam

검색결과 55건 처리시간 0.017초

가상쐐기와 기존쐐기의 물리적 특성 비교 (Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge)

  • 최동락;신경환;이규찬;김대용;안용찬;임도훈;김문경;허승재
    • Radiation Oncology Journal
    • /
    • 제17권1호
    • /
    • pp.78-83
    • /
    • 1999
  • 목적 : 지멘스사의 가상쐐기의 임상적용을 위하여 물리적 특성을 조사하고 기존쐐기의 특성과 비교하였다. 대상 및 방법 : 6 그리고 15MV x-선(Siemens PRIMUS)을 사용하여 각각의 명목상의 쐐기각(15, 30, 45, 그리고 60$^{\circ}$)에 대해서 가상쐐기와 기존쐐기에 대한 측정이 수행되었다. 쐐기인자는 조사면의 크기와 측정 깊이를 변화시키면 서 물속에서 전리함을 이용하여 측정되었으며 가상쐐기의 경우 빔이 조사되는 동안 upper jaw가 움직이기 때문에 쐐기각도는 일정시간 동안 방사선을 조사하여 누적된 값을 기록하였다. 쐐기각도는 조사면의 크기가 15cm${\times}$ 20cm이고 측정깊이가 10cm일 때 전리함을 물 속에 위치시킨 후 빔의 중심 축에 대해서 수직인 방향으로 off-axis 상에서 측정되었다. 쐐기의 사용으로 인한 표면선량의 변화를 조사하기 위하여 쐐기를 사용하지 않은 경우와 가상쐐기와 기존쐐기를 각각 사용하였을 때 팬톰 표면과 특정깊이에 각각 평판형 전리함(Markus chamber, PTW 23343, Freiburg, Germany)과 파머형 전리함(NE2571, Nucleal Enterprise, England)을 빔의 중심축 상에 위치시킨 후 방사선량을 동시에 측정하였다. 이때 조사면의 크기는 15cm${\times}$20cm이었고 폴리스티렌 팬톰을 사용하였다. 결과 : 가상쐐기와 기존쐐기의 조사면의 크기에 따른 쐐기인자의 변화량은 각각 최대 2.1${\times}$와 3.9${\times}$이었으며 깊이에 따른 변화량은 각각 최대 1.9${\times}$와 2.9${\times}$ 였다. 가상쐐기와 기존쐐기의 l0m 깊이에서의 명목상의 쐐기각에 대해 모두 정확하게 일치하였다. 기존쐐기를 사용했을 때 표면선량이 가상쐐기나 쐐기를 사용하지 않은 경우에 대해 최대 20${\times}$ 정도(x-선 에너지 : 6-MV, 명목상의 쐐기각:45$^{\circ}$, SSD:80cm) 감소하였다. 결론 : 지멘스사의 가상쐐기와 기존쐐기의 특성을 측정결과를 근거로 비교하였다. 가상쐐기는 기존쐐기에 비해 쐐기인자의 깊이 의존성이 적었으며 조사면의 크기 의존성에는 별 차이가 없었다. 쐐기각도의 정확성은 가상쐐기와 기존쐐기 모두 명목상의 쐐기각과 잘 일치하였다. 가상쐐기와 쐐기를 사용하지 않은 경우에 비해서 기존쐐기를 사용한 경우가 표면선량을 줄이는데 효과적이었다.

  • PDF

조직 불균질성에 의한 고에너지 광자선의 선량변화 (Dose Alterations at the Distal Surface by Tissue Inhomogeneity in High Energy Photon Beam)

  • 김영애;최태진;김옥배
    • Radiation Oncology Journal
    • /
    • 제13권3호
    • /
    • pp.277-283
    • /
    • 1995
  • 목적 : 임상 방사선치료에서 병소선량은 인체 연부조직의 방사선흡수와 유사한 수조펜텀에서 측정환산된 흡수선량자료를 이용하여 얻어지고 있으며, 방사선 치료부위내 공기층 또는 밀도가 낮은 폐조직 주위에 종양이 존재할 경우 공기층과 만나는 종양의 경계면 선량은 rebuild-up에 의해 낮아질 수 있으나 현재까지 연구 발표된 것은 많지 않다. 이에 본 연구에서는 6, 10 메가볼트 광자선을 이용하여 조직 불균질층 경계면 선량을 실험적으로 측정하여 종양선량에 미치는 영향을 분석하여 방사선 치료선량 결정에 이용하고자 하였다. 방법 : 고에너지 광자선의 조사면내 조직 불균질성에 의한 선량변화를 얻기 위하여 조직층에 해당되는 폴리스티렌 고체펜텀의 두께가 각각 10, 30, 50 mm 인 경우 공기층의 두께를 10, 20, 30, 50 mm 로 변화시켜서, 이러한 조직층과 공기층을 지나 종양의 가장자리에 해당되는 수조펜텀의 표면에 도달되는 방사선량을 평행평판형전리함으로 측정하였다. 방사선 조사면적은 임상에서 비교적 많이 이용되는 $5{\times}5,\;10{\times}10,\;20{\times}20\;cm^2$를 사용하였다. 결과 : 방사선 조사면적 $5{\times}5\;cm^2$ 이고 조직층 두께 30 mm 일때 6 메가볼트 광자선에서 공기층 두께변화에 따른 표면선량 변화는 표준선량보다 공기층 10 mm 에서는 $1.1\%$, 50 mm 에서는 $29.1\;\%$ 낮아졌으며 공기층 두께가 두꺼워질수록 방사선량 감소가 현저했다. 같은 조건에서 10 메가볼트 광자선에서 선량변화는 표준선량보다 $4.2\%$에서 $33.9\%$ 까지 낮아졌다. 동일 깊이에서 표준심부선량에 대한 불균질 조직층 선량의 비인 OER 은 조사면적 10{\times}10\;cm^2$ 이상에서는 1 보다 크거나 1 에 가까운 값을 보였다. 결론 : 방사선 조사면적이 커지면 공기층과 인접한 조직 경계면의 선량감소는 거의 나타나지 않으며, $10{\times}10\;cm^2$ 이하의 소조사면 치료시 조직 경계면의 종양에 대한 치료선량 평가에는 rebuild-up 효과를 고려하여야 될 것으로 생각된다. 임상에서 6 메가볼트 광자선을 사용하여 공기층이 존재하는 구강과 인후두 종양을 치료할 때, 공기층에 인접한 점막층 (1-3 mm) 의 선량은 표준선량에 비해 $29\%$ 까지 적게 도달될 수 있으므로 방사선 치료선량 결정에 이러한 곁과를 필히 고려하여야 될 것으로 사료된다.

  • PDF

6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구 (The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam)

  • 이승훈;곽근탁;박주경;김양수;차석용
    • 대한방사선치료학회지
    • /
    • 제25권2호
    • /
    • pp.145-151
    • /
    • 2013
  • 목 적: 본 연구에서 우리는 6 MeV 전자선의 조사야 확대에 따른 선량변화가 차폐물질 원자번호와 관계가 있음을 알아보고 그 영향인자를 분석 하고자 한다. 대상 및 방법: 먼저 평행평판형 전리함(Exradin P11)을 $25{\times}25cm^2$ 폴리스티렌 팬텀표면에 평탄하게 끼운다. 허용투과율 5% 두께의 알루미늄, 구리, 납 물질들을 팬텀 상단에 차폐시킨 후 조사야 $6{\times}6$, $10{\times}10$ 그리고 $20{\times}20cm^2$별로 측정하였다. 조사조건은 선원-표면간거리 100 cm에서 기준조사야인 $10{\times}10cm^2$에 6 MeV 전자선을 이용하여 100 cGy 조사하였다. 다음으로 MCNP (Monte Carlo N Particle Transport Code)를 이용하여 각 물질 통과 후 발생되는 광자수, 전자수, 그리고 축적에너지를 계산하였다. 결 과: 허용투과율 5% 두께에 대한 차폐물 종류에 따른 측정결과 조사야 $10{\times}10cm^2$을 기준으로 한 $6{\times}6cm^2$$20{\times}20cm^2$의 두께변화율은 알루미늄에서 각각 +0.06%와 -0.06%, 구리에서 각각 +0.13%와 -0.1%, 납에서 각각 -1.53%와 +1.92%였다. 계산결과 조사야 $10{\times}10cm^2$ 대비 $6{\times}6cm^2$, $20{\times}20cm^2$의 축적에너지는 차폐를 하지 않았을 경우 각각 -4.3%와 +4.85%, 알루미늄 사용 시 각각 -0.87%와 +6.93%, 구리 사용 시 각각 -2.46%와 +4.48%, 납 사용 시 각각 -4.16%와 +5.57%였다. 광자수의 경우 차폐를 하지 않았을 경우 각각 -8.95%와 +15.92%, 알루미늄 사용 시 각각 -15.56%와 +16.06%, 구리 사용시 각각 -12.27%와 +15.53%, 납 사용 시 각각 -12.36%와 +19.81%였다. 전자수의 경우 차폐를 하지 않았을 경우 각각 -3.92%와 +4.55%, 알루미늄 사용 시 각각 +0.59%와 +6.87%, 구리 사용 시 각각 -1.59%와 +3.86%, 납 사용 시 각각 -5.15%와 +4.00%였다. 결 론: 본 연구로 조사야 증가함에 따른 차폐물 두께가 저 원자번호에서 감소하며, 고 원자번호에서는 증가함을 볼 수 있었으며, 계산을 통해 저 원자번호물질에서는 저지방사선, 고 원자번호물질에서는 산란전자가 영향을 주는 것을 알 수 있었다.

  • PDF

공동(air cavity)의 존재 시 실험적 선량분포와 치료계획상의 선량분포 비교 (Comparison of Experimental and Radiation Therapy Planning (RTP) Dose Distributions on Air Cavity)

  • 김연래;서태석;고신관;이정우
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제33권3호
    • /
    • pp.261-268
    • /
    • 2010
  • 고 에너지 광자선 치료 시 공동의 존재로 인한 실험적 선량분포와 치료계획상의 선량분포의 변화를 비교, 평가 하고자 하였으며, 선형가속기의 6 MV 광자선을 이용해서 폴리스틸렌 팬텀, 자체 제작한 아크릴 팬텀으로 공동을 만들고 표면에서 공동까지의 거리는 3 cm로 하고 선원-측정기간 거리는 100 cm로 고정하였고 공동의 크기는 가로 $\times$ 세로 $\times$ 높이로 정하였다. 공동의 넓이, 높이, 존재 유무, 그리고 조사면과 공동의 크기비율에 따른 깊이에 대한 선량변화를 평판형전리함과 미소전류계를 이용하여 측정하였다. 치료계획상의 선량분포는 불균질 보정을 하고 치료계획을 하여 비교하였다. 그 결과 공동의 넓이가 커짐에 따라 선량은 점차 감소하였다. 공동의 존재 시에, 공동후면 이후 깊이선량은 공동의 비존재시보다 크게 나타났다. 공동의 크기를 $5{\times}5{\times}3\;cm^3$로 고정했을 때 조사면이 $4{\times}4\;cm^2$, $5{\times}5\;cm^2$, $6{\times}6\;cm^2$일 경우에 rebuild-up이 일어났다. 그러나 조사면이 $10{\times}10\;cm^2$에서는 선량감소만이 나타났다. 또한 조사면을 $5{\times}5\;cm^2$로 고정했을 때, 공동의 넓이가 $4{\times}4\;cm^2$, $5{\times}5\;cm^2$일 경우에는 rebuild-up현상이 일어났지만, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$일 경우에는 일어나지 않았다. 모든 경우에서 치료계획상의 선량분포에서 rebuild-up 현상이 나타나지 않았다. 따라서 공동이 위치한 곳에 종양이 존재할 때는 치료계획상의 선량분포에 차이가 있으므로 주의를 할 필요가 있다.

전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구 (The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy)

  • 박시온;곽근탁;박주경;이승훈;김양수;김정수;권형철;이선영
    • 대한방사선치료학회지
    • /
    • 제31권1호
    • /
    • pp.57-65
    • /
    • 2019
  • 목 적: 전자선 치료에서 저 용융점 납합금과 순수 납을 이용한 차폐 시 두께증가에 따른 블록 가장자리의 산란선 영향을 알아보고자 한다. 대상 및 방법: $10{\times}10cm^2$ 어플리케이터의 Insert Frame 절반을 차폐하도록 블록을 제작하였고, 두께는 각 재질당 3, 5, 10, 15, 20 (mm)로 하였다. 공통 조건을 에너지 6 MeV, 선량률 300 MU/Min, 갠트리 각도 0, 부여선량 100 MU으로 설정하였고, 블록의 위치와 측정점의 위치, 블록재질을 각각 달리하여 블록 두께증가에 따른 상대적인 산란비율을 평행평판형 전리함과 고체팬텀으로 측정하였다. 결 과: (측정 깊이 / 블록 위치 / 블록 재질)이 (표면 / 어플리케이터 / 순수 납)일 때 블록 두께가 3, 5, 10, 15, 20 (mm) 순으로 증가함에 따라 상대선량은 15.33 nC, 15.28 nC, 15.08 nC, 15.05 nC, 15.07 nC로 측정되었다. (표면 / 어플리케이터 / 합금 납)일 때 15.19 nC, 15.25 nC, 15.15 nC, 14.96 nC, 15.15 nC로 측정되었다. (표면 / 팬텀 위 / 순수 납)일 때 15.62 nC, 15.59 nC, 15.53 nC, 15.48 nC, 15.34 nC로 측정되었다. (표면 / 팬텀 위 / 합금 납)일 때 15.56 nC, 15.55 nC, 15.51 nC, 15.42 nC, 15.39 nC로 측정되었다. (심부 / 어플리케이터 / 순수 납)일 때 16.70 nC, 16.84 nC, 16.72 nC, 16.88 nC, 16.90 nC로 측정되었다. (심부 / 어플리케이터 / 합금 납)일 때 16.83 nC, 17.12 nC, 16.89 nC, 16.77 nC, 16.52 nC로 측정되었다. (심부 / 팬텀 위 / 순수 납)일 때 17.41 nC, 17.45 nC, 17.34 nC, 17.42 nC, 17.25 nC로 측정되었다. (심부 / 팬텀 위 / 합금 납)일 때 17.45 nC, 17.44 nC, 17.47 nC, 17.43 nC, 17.35 nC로 측정되었다. 결 론: 차폐블록을 이용하여 전자선 치료를 진행할 때 블록위치는 환자 체표면보다는 어플리케이터에 삽입하고 두께는 각 사용 에너지에 해당되는 최소 적정차폐두께로 제작해야 한다. 또한 블록 가장자리 경계선으로부터 떨어진 거리에 따라 변화하는 산란선의 영향을 충분히 고려하여 치료를 시행하는 것이 바람직하다고 사료된다.