• Title/Summary/Keyword: Parallel grooved seal

Search Result 3, Processing Time 0.015 seconds

Prediction of Annular Type Seal Leakage Using 3D CFD (3차원 CFD를 사용한 환상 실의 누설량 예측)

  • Seok, Hee-Soo;Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.150-156
    • /
    • 2009
  • Precise leakage prediction for annular type seals of turbomachinery is necessary for enhancing their efficiency and various prediction methods have been developed. As the seal passage is designed intricately, the analysis based on Bulk-flow concept which has been mainly used in predicting seal leakage is limited. In order to improve the seal leakage prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD (Computational Fluid Dynamics) analysis has been performed for predicting leakage of various non-contact type anular seals using FLUENT. Compared to the results by Bulk-flow model analysis, experiment, and 2D CFD analysis, the result of 3D CFD analysis shows improvement in predicting seal leakage, especially for the parallel grooved pump seal.

An experimental study on influence of wearing seal groove shape to performance of the pump (마모 실 홈 형상이 펌프 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.285-291
    • /
    • 2014
  • This paper is related to the improvement of efficiency for high performance centrifugal pumps by reducing leakage loss, which is achieved by applying the grooved seal as a non-contact seal to the pumps. Various combinations of grooved seal types, including the spiral and the parallel groove in the rotor and/or in the stator, were tested by the experiment. And the corresponding hydraulic performance and the magnitude of axial thrust were measured and calculated for ten cases. From the results, the type with the spiral groove(spiral angle : $0.98^{\circ}$) in both the rotor and the stator was found to be most effective. In this case, the head and the efficiency were improved from the original design by 2.1% and 2.3% respectively at design capacity($340m^3/h$), and the axial thrust was decreased by 10%.

Effects of Annular Seals on the Stability of Centrifugal Pump Rotors (遠心펌프 回轉軸系의 安定性에 미치는 시일의 影響)

  • 양보석;오세규;암곤탁삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 1986
  • Rotor dynamic response of pumps is greatly influenced by the nature of the hydraulic forces arising from wearing seal, balance drum and impeller, etc.. Therefore, rotor dynamic analysis should be conducted during the design stage in order to aleviate some of the vibrational problems which might occur during the operational life of pumps. Previsousely, the authors have proposed the method to obtain the dynamic seal coefficients of the annular plain seal, convergent and divergent tapered seals, parallel grooved seal, spiral grooved seal and annular stepped seal. On the basis of these results, this paper presents the investigated effect of seals on the stability behavior of a centrifugal pump. The results show the effects of seal geometry, pressure difference, clearance, length/diameter ratio, on stability behavior.