• Title/Summary/Keyword: Parallel flow

Search Result 1,064, Processing Time 0.03 seconds

Numerical Study on Flow and Heat Transfer Enhancement during Flow Boiling in Parallel Microchannels (병렬 미세관 흐름비등의 유동특성 및 열전달 향상에 대한 수치적 연구)

  • Jeon, Jin-Ho;Lee, Woo-Rim;Suh, Young-Ho;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.472-473
    • /
    • 2008
  • Flow boiling in parallel microchannels has received attention as an effective heat sink mechanism for power-densities encountered in microelectronic equipment. the bubble dynamics coupled with boiling heat transfer in microchannels is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulation is performed to further clarify the dynamics of flow boiling in microchannels. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle. The method is further extended to treat the no-slip and contact angle conditions on the immersed solid. Also, the reverse flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of channel shape and inlet area restriction on the bubble growth, reverse flow and heat transfer are quantified.

  • PDF

A Development of Parallel Processing for Power Flow analysis (전력 조류 계산의 병렬처리에 관한 연구)

  • Lee, Chun-Mo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.55-59
    • /
    • 2002
  • Parallel processing is able to be used effectively on computationally intense power system problems. But this technology is not still available is not only parallel computer but also parallel processing scheme. Testing these algorithms to ensure accuracy, and evaluation of their performance is also an issue. Although a significant amount of parallel algorithms of power system problem have been developed in last decade, actual testing on parallel computer architectures lies in the beginning stages because no clear cut paths. This paper presents Jacobian modeling method to supply the base being able to treat power flow by newton's method by the computer. This method is to assign and to compute teared blocks of sparse matrix at each parallel processors. The testing to insure accuracy of developed method have been done on serial computer by trying to simulate a parallel environment.

Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet (통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

A Representation for Multithreaded Data-parallel Programs : PCFG(Parallel Control Flow Graph) (다중스레드 데이타 병렬 프로그램의 표현 : PCFG(Parallel Control Flow Graph))

  • 김정환
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.12
    • /
    • pp.655-664
    • /
    • 2002
  • In many data-parallel applications massive parallelism can be easily extracted through data distribution. But it often causes very long communication latency. This paper shows that task parallelism, which is extracted from data-parallel programs, can be exploited to hide such communication latency Unlike the most previous researches over exploitation of task parallelism which has not been considered together with data parallelism, this paper describes exploitation of task parallelism in the context of data parallelism. PCFG(Parallel Control Flow Graph) is proposed to represent a multithreaded program consisting of a few task threads each of which can include a few data-parallel loops. It is also described how a PCFG is constructed from a source data-parallel program through HDG(Hierarchical Dependence Graph) and how the multithreaded program can be constructed from the PCFG.

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Kuen;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 두 채널을 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Hong, Seong-Ho;Shin, Jong-Kuen;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2810-2815
    • /
    • 2008
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental result. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap is presented. Auto and cross correlation for the axial-flow velocity pattern are presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

  • PDF

Slim Air-Conditioner with Parallel Flow Heat Exchangers for Cooling of Telecommunication Cabinet (평행류 열교환기가 적용된 무선통신 중계기 냉각용 슬림형 공조기)

  • Cho, J.P.;Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2009
  • Slim telecommunication cabinet cooler, equipped with parallel flow heat exchangers and operating with R-22, is developed. The performance is compared with imported one, equipped with fin-tube heat exchangers and operating with R-134a. Test results show that the newly-developed cooler increases the cooling capacity by 6% and EER by 33%. The refrigerant charge for the developed cooler is 500g compared with 1250g for the imported one. The adoption of parallel flow heat exchanger appears to have reduced the refrigerant charge. In addition, it is shown that the reduced air flow rates through parallel heat exchangers as compared with those through fin-tube heat exchangers are beneficial to the reduction of the equipment noise.

Effect of Flow Inlet or Outlet Direction on Air-Water Two-Phase Distribution in a Parallel Flow Heat Exchanger Header

  • Kim, Nae-Hyun;Kim, Do-Young;Cho, Jin-Pyo;Kim, Jung-Oh;Park, Tae-Kyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.37-43
    • /
    • 2008
  • The air and water flow distributions are experimentally studied for a round header - ten flat tube configuration. Three different inlet orientation modes (parallel, normal, vertical) were investigated. Tests were conducted with downward flow configuration for the mass flux from 70 to $130kg/m^2s$, quality from 0.2 to 0.6, non-dimensional protrusion depth (h/D) from 0,0 to 0.5. It is shown that, for almost all the test conditions, vertical inlet yielded the best flow distribution, followed by normal and parallel inlet. Possible explanation is provided using flow visualization results.

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns (유로형상 변화에 따른 고분자 전해질 연료전지(PEMFC)의 성능 및 전달특성에 대한 3차원 수치 해석적 연구)

  • Lee, Pil-Hyong;Cho, Son-An;Choi, Seong-Hun;Hwang, Sang-Soon
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.78-85
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and air and removal of water generated from electrochemical reaction in diffusion layer. In this study. fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode channel together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in interdigitated flow channel. And effects of temperature and stoichiometric number on performance can be calculated and analyzed as well. Nomenclature.

  • PDF

Air-water two-phase distribution in an aluminum parallel flow heat exchanger header having different inlet orientations (유입 방향에 따른 알루미늄 평행류 열교환기 헤더내 공기-물 2 상류 분지 실험)

  • Kim, Nae-Hyun;Ham, Jung-Ho;Park, Tae-Kyun;Kim, Do-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2108-2112
    • /
    • 2007
  • The air and water flow distribution are experimentally studied for a round header-ten microchannel tube configuration. Three different inlet orientations (parallel, side, normal) were investigated. Tests were conducted with downward flow configuration for the mass flux from 70 to 130 kg/$m^2s$, quality from 0.2 to 0.6, non-dimensional protrusion depth (h/D) from 0.0 to 0.5. It is shown that, for almost all the test conditions, normal inlet yielded the best flow distribution, followed by side and parallel inlet. Possible reasoning is provided using flow visualization results.

  • PDF