• Title/Summary/Keyword: Parallel computer architecture

Search Result 231, Processing Time 0.021 seconds

A Parallel-Architecture Processor Design for the Fast Multiplication of Homogeneous Transformation Matrices (Homogeneous Transformation Matrix의 곱셈을 위한 병렬구조 프로세서의 설계)

  • Kwon Do-All;Chung Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.723-731
    • /
    • 2005
  • The $4{\times}4$ homogeneous transformation matrix is a compact representation of orientation and position of an object in robotics and computer graphics. A coordinate transformation is accomplished through the successive multiplications of homogeneous matrices, each of which represents the orientation and position of each corresponding link. Thus, for real time control applications in robotics or animation in computer graphics, the fast multiplication of homogeneous matrices is quite demanding. In this paper, a parallel-architecture vector processor is designed for this purpose. The processor has several key features. For the accuracy of computation for real application, the operands of the processors are floating point numbers based on the IEEE Standard 754. For the parallelism and reduction of hardware redundancy, the processor takes column vectors of homogeneous matrices as multiplication unit. To further improve the throughput, the processor structure and its control is based on a pipe-lined structure. Since the designed processor can be used as a special purpose coprocessor in robotics and computer graphics, additionally to special matrix/matrix or matrix/vector multiplication, several other useful instructions for various transformation algorithms are included for wide application of the new design. The suggested instruction set will serve as standard in future processor design for Robotics and Computer Graphics. The design is verified using FPGA implementation. Also a comparative performance improvement of the proposed design is studied compared to a uni-processor approach for possibilities of its real time application.

병렬분산 환경에서의 DEVS형식론의 시뮬레이션

  • Seong, Yeong-Rak;Jung, Sung-Hun;Kon, Tag-Gon;Park, Kyu-Ho-
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.5-5
    • /
    • 1992
  • The DEVS(discrete event system specification) formalism describes a discrete event system in a hierarchical, modular form. DEVSIM++ is C++ based general purpose DEVS abstract simulator which can simulate systems to be modeled by the DEVS formalism in a sequential environment. We implement P-DEVSIM++ which is a parallel version of DEVSIM++. In P-DEVSIM++, the external and internal event of models can be processed in parallel. To process in parallel, we introduce a hierarchical distributed simulation technique and some optimistic distributed simulation techniques. But in our algorithm, the rollback of a model is localized itself in contrast to the Time Warp approach. To evaluate its performance, we simulate a single bus multiprocessor architecture system with an external common memory. Simulation result shows that significant speedup is made possible with our algorithm in a parallel environment.

  • PDF

An Efficient Multidimensional Index Structure for Parallel Environments

  • Bok Koung-Soo;Song Seok-Il;Yoo Jae-Soo
    • International Journal of Contents
    • /
    • v.1 no.1
    • /
    • pp.50-58
    • /
    • 2005
  • Generally, multidimensional data such as image and spatial data require large amount of storage space. There is a limit to store and manage those large amounts of data in single workstation. If we manage the data on parallel computing environment which is being actively researched these days, we can get highly improved performance. In this paper, we propose a parallel multidimensional index structure that exploits the parallelism of the parallel computing environment. The proposed index structure is nP(processor)-nxmD(disk) architecture which is the hybrid type of nP-nD and 1P-nD. Its node structure in-creases fan-out and reduces the height of an index. Also, a range search algorithm that maximizes I/O parallelism is devised, and it is applied to k-nearest neighbor queries. Through various experiments, it is shown that the proposed method outperforms other parallel index structures.

  • PDF

Parallel 2D-DWT Hardware Architecture for Image Compression Using the Lifting Scheme (이미지 압축을 위한 Lifting Scheme을 이용한 병렬 2D-DWT 하드웨어 구조)

  • Kim, Jong-Woog;Chong, Jong-Wha
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.80-86
    • /
    • 2002
  • This paper presents a fast hardware architecture to implement a 2-D DWT(Discrete Wavelet Transform) computed by lifting scheme framework. The conventional 2-D DWT hardware architecture has problem in internal memory, hardware resource, and latency. The proposed architecture was based on the 4-way partitioned data set. This architecture is configured with a pipelining parallel architecture for 4-way partitioning method. Due to the use of this architecture, total latency was improved by 50%, and memory size was reduced by using lifting scheme.

  • PDF

Parallel Branch Instruction Extension for Thumb-2 Instruction Set Architecture (Thumb-2 명령어 집합 구조의 병렬 분기 명령어 확장)

  • Kim, Dae-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, the parallel branch instruction is proposed which executes a branch instruction and the frequently used instruction simultaneously to improve the performance of Thumb-2 instruction set architecture. In the proposed approach, new 32-bit parallel branch instructions are introduced which combine 16-bit branch instruction with each of the frequently used 16-bit LOAD, ADD, MOV, STORE, and SUB instructions, respectively. To provide the encoding space of the new instructions, the register field in less frequently executed instructions is reduced, and the new instructions are encoded by using the saved bits. Experiments show that the proposed approach improves performance by an average of 8.0% when compared to the conventional approach.

An FPGA-based Parallel Hardware Architecture for Real-time Eye Detection

  • Kim, Dong-Kyun;Jung, Jun-Hee;Nguyen, Thuy Tuong;Kim, Dai-Jin;Kim, Mun-Sang;Kwon, Key-Ho;Jeon, Jae-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.150-161
    • /
    • 2012
  • Eye detection is widely used in applications, such as face recognition, driver behavior analysis, and human-computer interaction. However, it is difficult to achieve real-time performance with software-based eye detection in an embedded environment. In this paper, we propose a parallel hardware architecture for real-time eye detection. We use the AdaBoost algorithm with modified census transform(MCT) to detect eyes on a face image. We parallelize part of the algorithm to speed up processing. Several downscaled pyramid images of the eye candidate region are generated in parallel using the input face image. We can detect the left and the right eye simultaneously using these downscaled images. The sequential data processing bottleneck caused by repetitive operation is removed by employing a pipelined parallel architecture. The proposed architecture is designed using Verilog HDL and implemented on a Virtex-5 FPGA for prototyping and evaluation. The proposed system can detect eyes within 0.15 ms in a VGA image.

Time Complexity Measurement on CUDA-based GPU Parallel Architecture of Morphology Operation

  • Izmantoko, Yonny S.;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.444-452
    • /
    • 2013
  • Operation time of a function or procedure is a thing that always needs to be optimized. Parallelizing the operation is the general method to reduce the operation time of the function. One of the most powerful parallelizing methods is using GPU. In image processing field, one of the most commonly used operations is morphology operation. Three types of morphology operations kernel, na$\ddot{i}$ve, global and shared, are presented in this paper. All kernels are made using CUDA and work parallel on GPU. Four morphology operations (erosion, dilation, opening, and closing) using square structuring element are tested on MRI images with different size to measure the speedup of the GPU implementation over CPU implementation. The results show that the speedup of dilation is similar for all kernels. However, on erosion, opening, and closing, shared kernel works faster than other kernels.

A 4-parallel Scheduling Architecture for High-performance H.264/AVC Deblocking Filter (고성능 H.264/AVC 디블로킹 필터를 위한 4-병렬 스케줄링 아키텍처)

  • Ko, Byung-Soo;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.63-72
    • /
    • 2012
  • In this paper, we proposed a parallel architecture of line & block edge filter for high-performance H.264/AVC deblocking filter for Quad Full High Definition(Quad FHD) video real time processing. To improve throughput, we designed 4-parallel block edge filter with 16 line edge filter. To reduce internal buffer size and processing cycle, we scheduled 4-parallel zig-zag scan order as deblocking filtering order. To avoid data conflicts we placed 1 delay cycle between block edge filtering. We implemented interleaving buffer, as internal buffer of block edge filter, to sharing buffer for reducing buffer size. The proposed architecture was simulated in 0.18um standard cell library. The maximum operation frequency is 108MHz. The gate count is 140.16Kgates. The proposed H.264/AVC deblocking filter can support Quad FHD at 113.17 frames per second by running at 90MHz.

A architecture for parallel rendering processor with by effective memory organization (효과적인 메모리 구조를 갖는 병렬 렌더링 프로세서 구조)

  • Kim, Kyung-Su;Yoon, Duk-Ki;Kim, Il-San;Park, Woo-Chan
    • Journal of Korea Game Society
    • /
    • v.5 no.3
    • /
    • pp.39-47
    • /
    • 2005
  • Current rendering processors are organized mainly to process a triangle as fast as possible and recently parallel 3D rendering processors, which can process multiple triangles in parallel with multiple rasterizers, begin to appear. For high performance in processing triangles, it is desirable for each rasterizer have its own local pixel cache. However, the consistency problem may occur in accessing the data at the same address simulaneously by more than one rasterizer. In this paper, we propose a parallel rendering processor architecture resolving such consistency problem effectively. Moreover, the proposed architecture reduces the latency due to a pixel cache miss significantly. The experimental results show that proposed architecture achieves almost linear speedup at best case even in sixteen rasterizer

  • PDF