• Title/Summary/Keyword: Parallel analysis

Search Result 2,979, Processing Time 0.036 seconds

A New Current Sharing Strategy of SRM Using Parallel Winding Method (병렬권선 방식에 의한 SRM의 부하전류분담)

  • 박성준;이동희;안진우;안영주
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.154-154
    • /
    • 2003
  • The switched reluctance motor(SRM) has a considerable potential for industrial applications because of its high reliability as a result of the absence of rotor windings. In some applications with SRM, a parallel switching strategy is often used for cost saving, increasing of current capacity and system reliability. This paper proposes a new parallel switching strategy of SRM using parallel winding. While conventional parallel switching devices are connected in a phase winding, power devices are connected in the parallel windings wound in each pole of stator in the proposed method. Paralleling strategy for current sharing in the proposed method can be easily determined without considerations of any nonlinear characteristics of power devices such as conduction resistance, threshold voltage and gain factor. The proposed paralleling strategy is verified by the mathematical analysis and experimental results.

Parallel Processing of 3D Rigid-Plastic FEM on a Cluster System (클러스터 시스템에서 3차원 강소성 유한요소법의 병렬처리)

  • Choi Young;Seo Yongwie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.122-129
    • /
    • 2005
  • On the cluster system, the parallel code of rigid-plastic FEM has been developed. The cluster system, Simforge, has 15 processors and the total memory is 4.5GBytes. In the developed parallel code, the distributed data of the column-wise partitioned stiffness are stored as the compressed row storage and the diagonal preconditioned conjugate gradient solver is applied. The analysis of block upsetting is performed with the parallel code on Simforge cluster system. In this paper, the analysis results are compared and discussed.

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Kuen;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

Estimation of Relative Potency with the Parallel-Line Model

  • Lee, Tae-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.633-640
    • /
    • 2012
  • Biological methods are described for the assay of certain substances and preparations whose potency cannot be adequately assured by chemical or physical analysis. The principle applied through these assays is of a comparison with a standard preparation to determine how much of the examined substance produces the same biological effects as a given quantity (the Unit) of the standard preparation. In these dilution assays, to estimate the relative potencies of the unknown preparations to the standard preparations, it is necessary to compare dose-response relationships of standard and unknown preparations. The dose-response relationship in the dilution assay is non-linear and sigmoid when a wide range of doses is applied. The parallel line model (applied to the dose region with the steepest slope) is used to estimate the relative potency. In this paper, the statistical theory in the parallel line model is explained with an application to a dilution assay data. The parallel line method is implemented in a SAS program and is available at the author's homepage(http://cafe.daum.net/go.analysis).

A Parallel Control Scheme for ABR Services in ATM Networks

  • Ding, Q.L.;Liew, S.C.
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.118-127
    • /
    • 2002
  • This paper proposes a new scheme - parallel control scheme with feedback control (PCFC) for ABR services in ATM networks. The information from a source is split into a number of streams, for delivery over separate parallel connections with particular coding. At the receiver, the original information is reconstructed by the received packet from the parallel connections. The effects of PCFC on the network performance are due to two factors: Traffic splitting and load balancing. By combinations of analysis and simulation, this paper studies the implications of PCFC for how the ABR parameters should be scaled and the advantages of PCFC compared with other existing schemes.

Parallel Implementation of Nonlinear Analysis Program of PSC Frame Using MPI (MPI를 이용한 PSC 프레임 비선형해석 프로그램의 병렬화)

  • 이재석;최규천
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.61-68
    • /
    • 2001
  • A parallel nonlinear analysis program of prestressed concrete frame is migrated on a PC cluster system and a massively parallel processing system, CRAY T3E system, using MPI. The PC cluster system is configured with Pentium Ⅲ class PCs and fast ethernet. The CRAY T3E system is composed of a set of nodes each containing one Processing Element (PE), a memory subsystem and its distributed memory interconnect network. Parallel computing algorithms are implemented on element-wise processing parts including the calculation of stiffness matrix, element stresses and determination of material states, check of material failure and calculation of unbalanced loads. Parallel performance of the migrated program is evaluated through typical numerical examples.

  • PDF

A Study for Parallel Computing Efficiency Comparing Numerical Solutions of Battery Pack (배터리 팩 수치해석 해의 비교를 통한 병렬연산 효율성 연구)

  • Kim, Kwang Sun;Jang, Kyung Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.20-25
    • /
    • 2016
  • The parallel computer cluster system has been known as the powerful tool to solve a complex physical phenomenon numerically. The numerical analysis of large size of Li-ion battery pack, which has a complex physical phenomenon, requires a large amount of computing time. In this study, the numerical analyses were conducted for comparing the computing efficiency between the single workstation and the parallel cluster system both with multicore CPUs'. The result shows that the parallel cluster system took the time 80 times faster than the single work station for the same battery pack model. The performance of cluster system was increased linearly with more CPU cores being increased.

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 두 채널을 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Hong, Seong-Ho;Shin, Jong-Kuen;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2810-2815
    • /
    • 2008
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental result. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap is presented. Auto and cross correlation for the axial-flow velocity pattern are presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

  • PDF

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.

Parallel Computation of a Nonlinear Structural Problem using Parallel Multifrontal Solver (다중 프런트 해법을 이용한 비선형 구조문제의 병렬계산)

  • Jeong, Sun Wan;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.41-50
    • /
    • 2003
  • In this paper, nonlinear parallel structural analyses are introduced by using the parallel multifrontal solver and damage localization for 2D and 3D crack models is presented as the application of nonlinear parallel computation. The parallel algorithms related with nonliear reduce the amount of memory used is carried out because many variables should be utilized for this highly nonlinear damage analysis. Also, Riks' continuation method is parallelized to search the solution when strain softening occurs due to damage evolution. For damage localization problem, several computational models having up to around 1-million degree of freedoms are used. The parallel performance in this nonlinear parallel algorithm is shown through these examples and the local variation of damage at crack tip is compared among the models with different degree of freedoms.