• Title/Summary/Keyword: Parallel Temporal Reasoner

Search Result 2, Processing Time 0.019 seconds

MRQUTER : A Parallel Qualitative Temporal Reasoner Using MapReduce Framework (MRQUTER: MapReduce 프레임워크를 이용한 병렬 정성 시간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.231-242
    • /
    • 2016
  • In order to meet rapid changes of Web information, it is necessary to extend the current Web technologies to represent both the valid time and location of each fact and knowledge, and reason their relationships. Until recently, many researches on qualitative temporal reasoning have been conducted in laboratory-scale, dealing with small knowledge bases. However, in this paper, we propose the design and implementation of a parallel qualitative temporal reasoner, MRQUTER, which can make reasoning over Web-scale large knowledge bases. This parallel temporal reasoner was built on a Hadoop cluster system using the MapReduce parallel programming framework. It decomposes the entire qualitative temporal reasoning process into several MapReduce jobs such as the encoding and decoding job, the inverse and equal reasoning job, the transitive reasoning job, the refining job, and applies some optimization techniques into each component reasoning job implemented with a pair of Map and Reduce functions. Through experiments using large benchmarking temporal knowledge bases, MRQUTER shows high reasoning performance and scalability.

Design and Implementation of a Large-Scale Spatial Reasoner Using MapReduce Framework (맵리듀스 프레임워크를 이용한 대용량 공간 추론기의 설계 및 구현)

  • Nam, Sang Ha;Kim, In Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.397-406
    • /
    • 2014
  • In order to answer the questions successfully on behalf of the human in DeepQA environments such as Jeopardy! of the American quiz show, the computer is required to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a scalable spatial reasoning algorithm for deriving efficiently new directional and topological relations using the MapReduce framework, one of well-known parallel distributed computing environments. The proposed reasoning algorithm assumes as input a large-scale spatial knowledge base including CSD-9 directional relations and RCC-8 topological relations. To infer new directional and topological relations from the given spatial knowledge base, it performs the cross-consistency checks as well as the path-consistency checks on the knowledge base. To maximize the parallelism of reasoning computations according to the principle of the MapReduce framework, we design the algorithm to partition effectively the large knowledge base into smaller ones and distribute them over multiple computing nodes at the map phase. And then, at the reduce phase, the algorithm infers the new knowledge from distributed spatial knowledge bases. Through experiments performed on the sample knowledge base with the MapReduce-based implementation of our algorithm, we proved the high performance of our large-scale spatial reasoner.