• Title/Summary/Keyword: Parallel Genetic Algorithm(PGA)

Search Result 26, Processing Time 0.023 seconds

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA ($A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).

Improvement of Falling Motions for Humanoid Robot Using Injection PGA (주입형 PGA를 이용한 휴머노이드 로봇의 넘어짐 자세 개선)

  • An, Kwang-Chul;Cho, Young-Wan;Seo, Ki-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.343-346
    • /
    • 2008
  • 휴머노이드 로봇이 넘어질 경우, 충격에 의한 손상이 발생할수 있다. 이를 최소화하는 넘어짐 자세의 생성을 위하여 개선된 PGA 기반의 탐색기법을 제안한다. 다목적함수를 고려한 군집 간 이주방식의 효율적 조합을 통해 넘어짐 충격을 최소화하는 각 관절 궤적을 구할수 있도록 하였다. 제안된 기법의 검증을 위하여 Sony QRIO 로봇에 대해서 ODE 기반의 Webots 시뮬레이션을 이용하여 실험을 수행하였다.

  • PDF

A 2-Dimension Torus-based Genetic Algorithm for Multi-disk Data Allocation (2차원 토러스 기반 다중 디스크 데이터 배치 병렬 유전자 알고리즘)

  • 안대영;이상화;송해상
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.9-22
    • /
    • 2004
  • This paper presents a parallel genetic algorithm for the Multi-disk data allocation problem an NP-complete problem. This problem is to find a method to distribute a Binary Cartesian Product File on disk-arrays to maximize parallel disk I/O accesses. A Sequential Genetic Algorithm(SGA), DAGA, has been proposed and showed the superiority to the other proposed methods, but it has been observed that DAGA consumes considerably lengthy simulation time. In this paper, a parallel version of DAGA(ParaDAGA) is proposed. The ParaDAGA is a 2-dimension torus-based Parallel Genetic Algorithm(PGA) and it is based on a distributed population structure. The ParaDAGA has been implemented on the parallel computer simulated on a single processor platform. Through the simulation, we study the impact of varying ParaDAGA parameters and compare the quality of solution derived by ParaDAGA and DAGA. Comparing the quality of solutions, ParaDAGA is superior to DAGA in all cases of configurations in less simulation time.

Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks (정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출)

  • Choi, Jeoung-Nae;Kim, Young-Il;Oh, Sung-Kwun;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

Design of Optimized Cascade Controller by Hierarchical Fair Competition-based Genetic Algorithms for Rotary Inverted Pendulum System (계층적 공정 경쟁 유전자 알고리즘을 이용한 회전형 역 진자 시스템의 최적 캐스케이드 제어기 설계)

  • Jung, Seung-Hyun;Jang, Han-Jong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.104-106
    • /
    • 2007
  • In this paper, we propose an approach to design of optimized Cascade controller for Rotary Inverted Pendulum system using Hierarchical Fair Competition-based Genetic Algorithm(HFCGA). GAs may get trapped in a sub-optimal region of the search space thus becoming unable to find better quality solutions, especially for very large search space. The Parallel Genetic Algorithms(PGA) are developed with the aid of global search and retard premature convergence. HFCGA is a kind of multi-populations of PGA. In this paper, we design optimized Cascade controller by HFCGA for Rotary Inverted Pendulum system that is nonlinear and unstable. Cascade controller comprise two feedback loop, parameters of controller optimize using HFCGA. Then designed controller evaluate by apply to the real plant.

  • PDF

A Genetic Algorithm for Dynamic Job Shop Scheduling (동적 Job Shop 일정계획을 위한 유전 알고리즘)

  • 박병주;최형림;김현수;이상완
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.2
    • /
    • pp.97-109
    • /
    • 2002
  • Manufacturing environments in the real world are subject to many sources of change and uncertainty, such as new job releases, job cancellations, a chance in the processing time or start time of some operation. Thus, the realistic scheduling method should Properly reflect these dynamic environment. Based on the release times of jobs, JSSP (Job Shoe Scheduling Problem) can be classified as static and dynamic scheduling problem. In this research, we mainly consider the dynamic JSSP with continually arriving jobs. The goal of this research is to develop an efficient scheduling method based on GA (Genetic Algorithm) to address dynamic JSSP. we designed scheduling method based on SGA (Sing1e Genetic Algorithm) and PGA (Parallel Genetic Algorithm) The scheduling method based on GA is extended to address dynamic JSSP. Then, This algorithms are tested for scheduling and rescheduling in dynamic JSSP. The results is compared with dispatching rule. In comparison to dispatching rule, the GA approach produces better scheduling performance.

Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map (3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

Improvement of Falling Motions for Humanoid Robot Using Injection-migration PGA (주입-이주형 PGA를 이용한 휴머노이드 로봇의 넘어짐 자세 개선)

  • An, Kwang-Chul;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.280-285
    • /
    • 2009
  • This paper introduced an automatic generation method of falling motions for humanoid robots to minimize a damage. The proposed approach used a PGA based optimization technique to find a set of joint trajectories which minimize a damage of the falling over and down. Injection-migration PGA technique is introduced and compared with EMO and various migration topologies. To verify the proposed method, experiments for falling motions were executed for Sony QRIO robot in Webots simulation environments.

A study on HFC-based GA (HFC 기반 유전자알고리즘에 관한 연구)

  • Kim, Gil-Seong;Choe, Jeong-Nae;O, Seong-Gwan;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.341-344
    • /
    • 2007
  • 본 논문에서는 계층적 공정 경쟁 개념을 병렬 유전자 알고리즘에 적용하여 계층적 공정 경쟁 기반 병렬유전자 알고리즘 (Hierarchical Fair Competition Genetic Algorithm: HFCGA)을 구현하였을 뿐만 아니라 실수코딩 유전자 알고리즘(Real-Coded Genetic Algorithm: RCGA)에서 좋은 성능을 갖는 산술교배(Arithmetic crossover), 수정된 단순교배(modified simple crossover) 그리고 UNDX(unimodal normal distribution crossover)등의 다양한 교배연산자들을 적용, 분석함으로써 개선된 병렬 유전자 알고리즘을 제안하였다. UNDX연산자는 다수의 부모(multiple parents)를 이용하여 부모들의 기하학적 중심(geometric center)에 근접하게 정규분포를 이루며 생성된다. 본 논문은 UNDX를 이용한 HFCGA모델을 구현하고 함수파라미터 최적화 문제에 많이 쓰이는 함수들에 적용시킴으로써 그 성능의 우수성을 증명 한다.

  • PDF

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Parallel Genetic Algorithms (계층적 경쟁기반 병렬 유전자 알고리즘을 이용한 퍼지집합 퍼지모델의 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2097-2098
    • /
    • 2006
  • In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF