• Title/Summary/Keyword: Parallel Controller

Search Result 505, Processing Time 0.208 seconds

Development of Vision system for Back Light Unit of Defect (백라이트 유닛의 결함 검사를 위한 비전 시스템 개발)

  • Han, Chang-Ho;Oh, Choon-Suk;Ryu, Young-Kee;Cho, Sang-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.161-164
    • /
    • 2006
  • In this thesis we designed the vision system to inspect the defect of a back light unit of plat panel display device. The vision system is divided into hardware and inspection algorithm of defect. Hardware components consist of illumination part, robot-arm controller part and image-acquisition part. Illumination part is made of acrylic panel for light diffusion and five 36W FPL's(Fluorescent Parallel Lamp) and electronic ballast with low frequency harmonics. The CCD(Charge-Coupled Device) camera of image-acquisition part is able to acquire the bright image by the light coming from lamp. The image-acquisition part is composed of CCD camera and frame grabber. The robot-arm controller part has a role to let the CCD camera move to the desired position. To take inspections of surface images of a flat panel display it can be controlled and located every nook and comer. Images obtained by robot-arm and image-acquisition board are saved on the hard-disk through windows programming and are tested whether there are defects by using the image processing algorithms.

Design of pole-assignment self-tuning controller for steam generator water level in nuclear power plants (원전 증기 발생기 수위 제어를 위한 자기 동조 제어기 설계)

  • Choi, Byung-Jae;No, Hee-Cheon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.306-311
    • /
    • 1996
  • This paper discusses the maintenance of the water level of steam generators at its programmed value. The process, the water level of a steam generator, has the nonminimum phase property. So, it causes a reverse dynamics called a swell and shrink phenomenon. This phenomenon is severe in a low power condition below 15 %, in turn makes the start-up of the power plant too difficult. The control algorithm used here incorporates a pole-assignment scheme into the minimum variance strategy and we use a parallel adaptation algorithm for the parameter estimation, which is robust to noises. As a result, the total control system can keep the water level constant during full power by locating closed-loop poles appropriately, although the process has the characteristics of high complexity and nonlinearity. Also, the extra perturbation signals are added to the input signal such that the control system guarantee persistently exciting. In order to confirm the control performance of a proposed pole-assignment self-tuning controller we perform a computer simulation in full power range.

  • PDF

Implementation of HIL Method to Analyze Driving Characteristic of Hybrid Electric Vehicle (하이브리드 자동차 구동 특성 분석을 위한 HIL 방식의 구현)

  • Oh, Sung Chul
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.100-105
    • /
    • 2011
  • By adopting HIL(Hardware-in-the-Loop), component characteristics in vehicle environment can be obtained without implementing component in the vehicle. In this paper, when specific motor is adopted as traction motor in hybrid electric vehicle HIL implementation procedures are explained. In order to implement HIL method motor testing. vehicle performance simulator and load characteristic are explained. Vehicle controller used in simulator is directly uploaded in real controller. Especially as a load dynamometer actively controlled motor system is used without connecting conventional mechanical inertia. Motor characteristics are obtained using HIL implementation when test motor is used as a traction motor for parallel hybrid electric vehicle. Proposed method can be used as experimental equipment to educate driving characteristics of hybrid electric vehicle.

  • PDF

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

An Efficient Method of Remote Control for Select Sequence in Process Control (공정제어에서 선택시퀀스를 위한 효율적인 리모트 콘트롤 제어방법)

  • Kong, Heon-Tag;Kim, Chi-Su;You, Jeong-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2010
  • When we design the control system used Programmable Logic controller(PLC), if we program a Sequential Function Chart(SFC), It is easy to understand the sequential flow of control, to maintenance the controller and to describe a program. SFC language is programmed by a single sequence, a select sequence and a parallel sequence. In a select sequence, when the select step is error, the whole process is stopped. If the error step has no connection the whole process, the loss is down when we debugging the program without stopping the whole process. Therefore, this thesis shows the efficient method of remote control for select sequence and we confirmed its feasibility through actual example.

Control of Decoupled Type High Precision Dual-Servo (Decoupled Type의 초정밀 이중 서보의 제어에 관한 연구)

  • Nam Byoung-Uk;Kim Ki-Hyun;Choi Young-Man;Kim Jung-Jae;Lee Suk-Won;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.43-50
    • /
    • 2006
  • Recently, with rapid development of semiconductor and flat panel display, the manufacturing equipments are required to have large travel range, high productivity, and high accuracy. In this paper, an ultra precision decoupled dual servo (DDS) system is proposed to meet these requirements. And a control scheme for the DDS is studied. The proposed DDS consists of a $XY{\Theta}$ fine stage for handling work-pieces precisely and a XY coarse stage for large travel range. The fine stage consists of four voice coil motors (VCM) and air bearing guides. The coarse stage consists of linear motors and air bearing guides. The DDS is mechanically decoupled between coarse stage and fine stage. Therefore, both stages must be controlled independently and the performance of the DDS is mainly determined by the fine stage. For high performance tracking, the controller of fine stage consists of time delay control (TDC) and perturbation observer while the controller of coarse stage is TDC alone. With these individual controllers, two kinds of dual-servo control strategies are suggested: master-slave type and parallel type. By simulations and experiments, the performances of two dual-servo control strategies are compared.

Robust Adaptive Control System for Induction Motor Drive Without Speed Sensor at Low Speed (저속영역에서 속도검출기가 없는 유도전동기의 강인성 적응제어 시스템)

  • Kim, Min-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • The paper describes a robust adaptive control algorithm for induction motor drive without speed sensor at low speed range. The control algorithm use only current sensors in a space vector pulse width modulation within loop control with rotor speed estimation and voltage source inverter. On-line rotor speed estimation is based on utilizing parallel model reference adaptive control system. MRAC of the modified flux model for flux and rotor speed estimator uses dual-adaptation mechanism, ${\omega}_r$ and ${\omega}_e$ scheme. The estimated flux components in the model can be compensated from the effects of offset errors on pure integrals. It can be compensated to the parameter variations and torque fluctuation with speed estimation in less then 10 rad/sec. In a simulation, the proposed induction motor control algorithm without speed sensor at very low speed range are shown to operate very well in spite of variable rotor time constant and fluctuating load without change the controller parameters. The suggested control strategy and estimation method have been validated by simulation study, and it proposed the designed system for the implementation using TI320C31 DSP/ASIC controller.

  • PDF

Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single- Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Noro, Osamu;Sato, Shinji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize the generated terminal voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of the independent inductive load variations and the prime mover speed changes The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor FC in parallel with the thyristor switched capacitor TSC and the thyristor controlled reactor TCR The feedback closed-loop terminal voltage responses in the single-phase SEIG coupled by a VSPM with different inductive passive load disturbances using the single-phase SVC with the PI controller are considered and discussed herem. A VSPM coupled the single-phase SEIG prototype setup is established. Its experimental results are illustrated as compared with its simulation ones and give good agreements with the digital simulation results for the single-phase SEIG driven by a VSPM, which is based on the SVC voltage regulation feedback control scheme.

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.

Development of a Hydraulic Level Control System for High-speed Rice Transplanting Machines (고속 이앙기의 유압 수평 제어 장치 개발에 관한 연구)

  • 정연근;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.79-88
    • /
    • 2002
  • This study was conducted to develop system for high speed rice transplanting machines. The control system includes a sensor detecting the tilt angle of the seedling bed, a micro-controller and a hydraulic system consisting of a double acting cylinder, a four-way three-position solenoid valve, a relief valve and a hydraulic pump. The levelling system shared the pump with the existing steering control, resulting in a tandem center circuit for the steering and levelling control systems. Using the input signal from the sensor, the micro-controller determined and generated the output signal to control the cylinder through the solenoid valve to keep the seedling bed always parallel to the water surface regardless of soil unevenness during the transplanting operations. Both an ON/OFF and a PWM control schemes were tested. When the flow rate was more than 1 ι/min in the ON/OFF control, the system showed unstable rolling. However, in the PWM control, the system worked stably although the flow rate was more than 1 ι/min. The PWM control showed a better performance when a large difference between the angle and the dead band of the control system occurred. The characteristics of tile system response to given tilt angles were predicted by a computer simulation. Both the ON/OFF and the PWM control systems worked well providing that the operating and waiting times were properly adjusted.