• Title/Summary/Keyword: Parallel Computing and Communications

Search Result 44, Processing Time 0.02 seconds

A Hardware Architecture of Hough Transform Using an Improved Voting Scheme (개선된 보팅 정책을 적용한 허프 변환 하드웨어 구조)

  • Lee, Jeong-Rok;Bae, Kyeong-Ryeol;Moon, Byungin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.773-781
    • /
    • 2013
  • The Hough transform for line detection is widely used in many machine vision applications due to its robustness against data loss and distortion. However, it is not appropriate for real-time embedded vision systems, because it has inefficient computation structure and demands a large number of memory accesses. Thus, this paper proposes an improved voting scheme of the Hough transform, and then applies this scheme to a Hough transform hardware architecture so that it can provide real-time performance with less hardware resource. The proposed voting scheme reduces computation overhead of the voting procedure using correlation between adjacent pixels, and improves computational efficiency by increasing reusability of vote values. The proposed hardware architecture, which adopts this improved scheme, maximizes its throughput by computing and storing vote values for many adjacent pixels in parallel. This parallelization for throughput improvement is accomplished with little hardware overhead compared with sequential computation.

A Fast SAD Algorithm for Area-based Stereo Matching Methods (영역기반 스테레오 영상 정합을 위한 고속 SAD 알고리즘)

  • Lee, Woo-Young;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.8-12
    • /
    • 2012
  • Area-based stereo matchng algorithms are widely used for image analysis for stereo vision. SAD (Sum of Absolute Difference) algorithm is one of well known area-based stereo matchng algorithms with the characteristics of data intensive computing application. Therefore, it requires very high computation capabilities and its processing speed becomes very slow with software realization. This paper proposes a fast SAD algorithm utilizing SSE (Streaming SIMD Extensions) instructions based on SIMD (Single Instruction Multiple Data) parallism. CPU supporing SSE instructions has 16 XMM registers with 128 bits. For the performance evaluation of the proposed scheme, we compare the processing speed between SAD with/without SSE instructions. The proposed scheme achieves four times performance improvement over the general SAD, which shows the possibility of the software realization of real time SAD algorithm.

Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial (기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계)

  • Gwon, Sun Hak;Kim, Chang Hun;Hong, Chun Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1047-1054
    • /
    • 2004
  • In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.