• Title/Summary/Keyword: Parallel Beam

Search Result 313, Processing Time 0.023 seconds

Type of tooth movement during en masse retraction of the maxillary anterior teeth using labial versus lingual biocreative therapy in adults: A randomized clinical trial

  • Sadek, Mais M.;Sabet, Noha E.;Hassan, Islam T.
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.381-392
    • /
    • 2019
  • Objective: The objective of this two-arm parallel trial was to compare the type of tooth movement during en masse retraction of the maxillary anterior teeth using labial versus lingual biocreative therapy. Methods: Twenty-eight subjects were randomized in a 1 : 1 ratio to either the labial or lingual group. En masse anterior retraction was performed using labial biocreative therapy in group A and lingual biocreative therapy in group B. Cone beam computed tomography scans were taken before and after retraction and the primary outcome was the type of tooth movement during anterior retraction. Data were analyzed using paired t-tests for comparisons within each group and independent-sample t-test for comparison of the mean treatment changes between the two groups. Results: Significant differences were found between the two groups in relation to the type of tooth movement (labiolingual inclination of the central incisor; mean difference, $5.85{\pm}1.85^{\circ}$). The canine showed significant distal tipping in the lingual group (mean difference, $6.98{\pm}1.25^{\circ}$). The canine was significantly more intruded in the lingual group (mean difference, $1.67{\pm}0.49mm$). Good anchorage control and significant soft tissue changes occurred in both groups. No serious adverse effects were detected. Conclusions: With a 10-mm retraction hook, the labial biocreative technique with the reverse curve overlay provided anterior retraction with good torque control, while in the lingual group, anterior retraction occurred with controlled tipping movement with significant distal tipping and intrusion of the canine (trial registration: The trial was registered at ClinicalTrials.gov [NCT03239275]).

Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load (스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증)

  • Lee, Dong-Seop;Kim, In-Su;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

Non-coplanar whole brain radiotherapy is an effective modality for parotid sparing

  • Park, Jaehyeon;Park, Jae Won;Yea, Ji Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • Background: The purpose of this study was to evaluate the efficacy and feasibility of non- coplanar whole brain radiotherapy (NC-WBRT) for parotid sparing. Methods: Fifteen cases, previously treated with WBRT were selected. NC-WBRT plans were generated. The beam arrangement for the non-coplanar plans consisted of superior anterior, right, and left beams. After generation of the non-coplanar plans a field-in-field technique was applied to the bilateral parallel opposed beams in order to reduce maximum dose and increase dose homogeneity. The NC-WBRT plans were subsequently compared with the previously generated bilateral WBRT (B-WBRT) plans. A field-in-field technique was also used with the B-WBRT plans according to our departmental protocol. As per our institutional practice a total dose of 30 Gy in 10 fractions of WBRT was administered 5 days a week. Results: The mean dose to the parotid gland for the two different plans were 16.2 Gy with B-WBRT and 13.7 Gy with NC-WBRT (p<0.05). In the NC-WBRT plan, the V5Gy, V10Gy, V15Gy, V20Gy, and V25Gy of the parotid were significantly lower (p<0.05) than those of the B-WBRT plan. The $D_{max}$ of the lens was also lower by 10% with NC-WBRT. Conclusion: The use of NC-WBRT plans could be a simple and effective method to reduce irradiated volumes and improve the dose-volume parameters of the parotid gland.

Mandibular skeletal posterior anatomic limit for molar distalization in patients with Class III malocclusion with different vertical facial patterns

  • Kim, Sung-Ho;Cha, Kyung-Suk;Lee, Jin-Woo;Lee, Sang-Min
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.250-259
    • /
    • 2021
  • Objective: The aim of this study was to compare the differences in mandibular posterior anatomic limit (MPAL) distances stratified by vertical patterns in patients with skeletal Class III malocclusion by using cone-beam computed tomography (CBCT). Methods: CBCT images of 48 patients with skeletal Class III malocclusion (mean age, 22.8 ± 3.1 years) categorized according to the vertical patterns (hypodivergent, normodivergent, and hyperdivergent; n = 16 per group) were analyzed. While parallel to the posterior occlusal line, the shortest linear distances from the distal root of the mandibular second molar to the inner cortex of the mandibular body were measured at depths of 4, 6, and 8 mm from the cementoenamel junction. MPAL distances were compared between the three groups, and their correlations were analyzed. Results: The mean ages, sex distribution, asymmetry, and crowding in the three groups showed no significant differences. MPAL distance was significantly longer in male (3.8 ± 2.6 mm) than in female (1.8 ± 1.2 mm) at the 8-mm root level. At all root levels, MPAL distances were significantly different in the hypodivergent and hyperdivergent groups (p < 0.001) and between the normodivergent and hyperdivergent groups (p < 0.01). MPAL distances were the shortest in the hyperdivergent group. The mandibular plane angle highly correlated with MPAL distances at all root levels (p < 0.01). Conclusions: MPAL distances were the shortest in patients with hyperdivergent patterns and showed a decreasing tendency as the mandibular plane angle increased. MPAL distances were significantly shorter (~3.16 mm) at the 8-mm root level.

Experiment of proof-of-principle on prompt gamma-positron emission tomography (PG-PET) system for in-vivo dose distribution verification in proton therapy

  • Bo-Wi Cheon ;Hyun Cheol Lee;Sei Hwan You;Hee Seo ;Chul Hee Min ;Hyun Joon Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2018-2025
    • /
    • 2023
  • In our previous study, we proposed an integrated PG-PET-based imaging method to increase the prediction accuracy for patient dose distributions. The purpose of the present study is to experimentally validate the feasibility of the PG-PET system. Based on the detector geometry optimized in the previous study, we constructed a dual-head PG-PET system consisting of a 16 × 16 GAGG scintillator and KETEK SiPM arrays, BaSO4 reflectors, and an 8 × 8 parallel-hole tungsten collimator. The performance of this system as equipped with a proof of principle, we measured the PG and positron emission (PE) distributions from a 3 × 6 × 10 cm3 PMMA phantom for a 45 MeV proton beam. The measured depth was about 17 mm and the expected depth was 16 mm in the computation simulation under the same conditions as the measurements. In the comparison result, we can find a 1 mm difference between computation simulation and measurement. In this study, our results show the feasibility of the PG-PET system for in-vivo range verification. However, further study should be followed with the consideration of the typical measurement conditions in the clinic application.

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

Parotid Gland Sparing Radiotherapy Technique Using 3-D Conformal Radiotherapy for Nasopharyngeal CarcinomB (비인강암에서 방사선 구강 건조증 발생 감소를 위한 3차원 입체조형치료)

  • Lim Jihoon;Kim Gwi Eon;Keum Ki Chang;Suh Chang Ok;Lee Sang-wook;Park Hee Chul;Cho Jae Ho;Lee Sang Hoon;Chang Sei Kyung;Loh Juhn Kyu
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Purpose : Although using the high energy Photon beam with conventional Parallel-opposed beams radiotherapy for nasopharyngeal carcinoma, radiation-induced xerostomia is a troublesome problem for patients. We conducted this study to explore a new parotid gland sparing technique in 3-D conformal radiotherapy (3-D CRT) in an effort to prevent the radiation-induced xerostomia. Materials and Methods : We peformed three different planning for four clinically node-negative nasopharyngeal cancer patients with different location of tumor(intracranial extension, nasal cavity extension, oropharyngeal extension, parapharyngeal extension), and intercompared the plans. Total prescription dose was 70.2 Gy to the isocenter. For plan-A, 2-D parallel opposing fields, a conventional radiotherapy technique, were employed. For plan-B, 2-D parallel opposing fields were used up until 54 Gy and afterwards 3-D non-coplanar beams were used. For plan-C, the new technique, 54 Gy was delivered by 3-D conformal 3-port beams (AP and both lateral ports with wedge compensator; shielding both superficial lobes of parotid glands at the AP beam using BEV) from the beginning of the treatment and early spinal cord block (at 36 Gy) was peformed. And bilateral posterior necks were treated with electron after 36 Gy. After 54 Gy, non-coplanar beams were used for cone-down plan. We intercompared dose statistics (Dmax, Dmin, Dmean, D95, DO5, V95, VOS, Volume receiving 46 Gy) and dose volume histograms (DVH) of tumor and normal tissues and NTCP values of parotid glands for the above three plans. Results : For all patients, the new technique (plan-C) was comparable or superior to the other plans in target volume isodose distribution and dose statistics and it has more homogenous target volume coverage. The new technique was most superior to the other plans in parotid glands sparing (volume receiving 46 Gy: 100, 98, 69$\%$ for each plan-A, B and C). And it showed the lowest NTCP value of parotid glands in all patients (range of NTCP; 96$\~$100$\%$, 79$\~$99$\%$, 51$\~$72$\%$ for each plan-A, B and C). Conclusion : We conclude that the new technique employing 3-D conformal radiotherapy at the beginning of radiotherapy and cone down using non-coplanar beams with early spinal cord block is highly recommended to spare parotid glands for node-negative nasopharygeal cancer patients.

  • PDF

Development of Two-dimensional Prompt-gamma Measurement System for Verification of Proton Dose Distribution (이차원 양성자 선량 분포 확인을 위한 즉발감마선 이차원분포 측정 장치 개발)

  • Park, Jong Hoon;Lee, Han Rim;Kim, Chan Hyeong;Kim, Sung Hun;Kim, Seonghoon;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.42-51
    • /
    • 2015
  • In proton therapy, verification of proton dose distribution is important to treat cancer precisely and to enhance patients' safety. To verify proton dose distribution, in a previous study, our team incorporated a vertically-aligned one-dimensional array detection system. We measured 2D prompt-gamma distribution moving the developed detection system in the longitudinal direction and verified similarity between 2D prompt-gamma distribution and 2D proton dose distribution. In the present, we have developed two-dimension prompt-gamma measurement system consisted of a 2D parallel-hole collimator, 2D array-type NaI(Tl) scintillators, and multi-anode PMT (MA-PMT) to measure 2D prompt-gamma distribution in real time. The developed measurement system was tested with $^{22}Na$ (0.511 and 1.275 MeV) and $^{137}Cs$ (0.662 MeV) gamma sources, and the energy resolutions of 0.511, 0.662 and 1.275 MeV were $10.9%{\pm}0.23p%$, $9.8%{\pm}0.18p%$ and $6.4%{\pm}0.24p%$, respectively. Further, the energy resolution of the high gamma energy (3.416 MeV) of double escape peak from Am-Be source was $11.4%{\pm}3.6p%$. To estimate the performance of the developed measurement system, we measured 2D prompt-gamma distribution generated by PMMA phantom irradiated with 45 MeV proton beam of 0.5 nA. As a result of comparing a EBT film result, 2D prompt-gamma distribution measured for $9{\times}10^9$ protons is similar to 2D proton dose distribution. In addition, the 45 MeV estimated beam range by profile distribution of 2D prompt gamma distribution was $17.0{\pm}0.4mm$ and was intimately related with the proton beam range of 17.4 mm.

Development of a MTF Measurement System for an Infrared Optical System (적외선 광학계용 MTF 측정장치 개발)

  • Son, Byoung-Ho;Lee, Hoi-Yoon;Song, Jae-Bong;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • In this paper, we developed a MTF (Modulation Transfer Function) measurement system using a knife-edge scanning method for infrared optics. It consists of an objective part to generate the target image, a collimator to make the beam parallel, and a detector to analyze the image. We used a tungsten filament as the light source and MCT (Mercury Cadmium Telluride) to detect the mid-infrared(wavelength $3-5{\mu}m$) image. We measured the MTF of a standard lens (f=5, material ZnSe) to test this instrument and compared the result to the theoretical value calculated using the ZEMAX commercial software. It was found that the difference was within ${\pm}0.035$ at the cut-off frequency (50 1/mm). Also, we calculated the A-type measurement uncertainty to check the reliability of the measurement. The result showed only 0.002 at 20 1/mm in spatial frequency, which means very little variation in the MTF measurement under the same conditions.

Comparison Study on Projection and Backprojection Methods for CT Simulation (투사 및 역투사 방법에 따른 컴퓨터단층촬영 영상 비교)

  • Oh, Ohsung;Lee, Seung Wook
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.323-330
    • /
    • 2014
  • Image reconstruction is one of the most important processes in CT (Computed tomography) technology. For fast scanning and low dose to the objects, iterative reconstruction is becoming more and more important. In the implementation of iterative reconstruction, projection and backprojection processes are considered to be indispensable parts. However, many approaches for projection and backprojection may result severe image artifacts due to their discrete characteristics and affects the reconstructed image quality. Thus, new approaches for projection and backprojection are highly demanded these days. In this paper, distance-driven approach was evaluated and compared with other conventional methods. The numerical simulator was developed to make the phantoms, and projection and backprojection images were compared using these approaches. As a result, it turned out that there are less artifacts during projection and backprojection in parallel and fan beam geometry.