• Title/Summary/Keyword: Parallel Beam

Search Result 313, Processing Time 0.059 seconds

Design and Application of Acrylic Electron Wedge to Improve Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 Acrylic Electron Wedge의 제작 및 사용)

  • Kim Young Bum;Kwon Young Ho;Whang Woong Ku;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20\%$) at the field junction area. In this study, we made Acrylic Electron Wedges to improve dose homogeneities(${\pm}5\%$) in these junction areas and considered application it to clinical practices. All measurements were made using 6, 9, 12, 16, 20MeV Electron beams from a linear accelerator for a $10{\times}10cm$ field at 100cm SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm, We acquired central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance as the thickness of the acryl insert, e.g. a 1 mm thick acryl insert reduce the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced by approximately 0.2MeV. These effects were almost independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase $(less\;than\;3\%)\;in\;the\;surface\;dose\;and\;a\;small\;Increase(less\;than\;1\%)$ in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction, and penumbra width was $35\;mm{\sim}40\;mm$. We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be use to improve dose uniformity at electron field junctions and it will be effectively applicated in clinical practices.

  • PDF

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

The Variation of Surface Dose by Beam Spoiler in 10 MV Photon Beam from Linear Accelerator (선형가속기 10 MV 광자선에서 산란판(Beam Spoiler) 사용 시 표면선량 변화)

  • Bae, Seong-Cheol;Kim, Jun-Ho;Lee, Choul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Purpose: The purpose of this study is to find a optimal beam spoiler condition on the dose distribution near the surface, when treating a squamous cell carcinoma of the head and neck and a lymphatic region with 10 MV photon beam. The use of a optimal spoiler allows elivering high dose to a superficial tumor volume, while maintaining the skin-sparing effect in the area between the surface to the depth of 0.4 cm. Materials and Methods: The lucite beam spoiler, which were a tissue equivalent, were made and placed between the surface and the photon collimators of linear accelerator. The surface-dose, the dose at the depth of 0.4 cm, and the maximum dose at the dmax were measured with a parallel-plate ionization chamber for $5{\times}5cm\;to\;30{\times}30cm^2$ field sizes using lucite spoilers with different thicknesses at varying skin-to-spoiler separation (SSS). In the same condition, the dose was measured with bolus and compared with beam spoiler. Results: The spoiler increased the surface and build-up dose and shifted the depth of maximum dose toward the surface. With a 10 MV x-ray beam and a optimal beam spoiler when treating a patient, a similer build-up dose with a 6 MV photon beam could be achieved, while maintaining a certain amount of skin spring. But it was provided higher surface dose under SSS of less than 5 cm, the spoiler thickness of more than 1.8 cm or more, and larger field size than $20{\times}20cm^2$ provided higher surface dose like bolus and obliterated the spin-sparing effect. the effects of the beam spoiler on beam profile was reduced with increasing depths. Conclusion: The lucite spoiler allowed using of a 10 MV photon beam for the radiation treatment of head and neck caner by yielding secondary scattered electron on the surface. The dose at superficial depth was increased and the depth of maximum dose was moved to near the skin surface. Spoiling the 10 MV x-ray beam resulted in treatment plans that maintained dose homogeneity without the consequence of increased skin reaction or treat volume underdose for regions near the skin surface. In this, the optimal spoiler thickeness of 1.2 cm and 1.8 cm were found at SSS of 7 cm for $10{\times}10cm^2$ field. The surface doses were measured 60% and 64% respectively. In addition, It showed so optimal that 94% and 94% at the depth of 0.4 cm and dmax respectively.

  • PDF

Chemically modulated polystyrene surface using various ion beam exposure time for liquid crystal alignment of high brightness mobile display (고휘도 휴대용 디스플레이를 위한 액정소자의 폴리스타일렌 배향막에 관한 연구)

  • Cho, Myung-Hyun;Lee, Ho-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.22-26
    • /
    • 2014
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure time. Transparent PS was replaced with conventional polyimde material. Especially, PS has higher transparent property than conventional polyimide thin film and it means PS is more suitable material for producing high brightness mobile LCD. As a non-contact process, IB bombardment process induced LC orientation in the direction parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time. Using this analysis, the optimal IB bombardment condition was determined at IB exposure time of up to 15 s. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property. And it has a highly potential of mobile high transparent mobile LCD such as smart phone display and mobile information device.

A Dielectric Slab Rotman Lens (유전판 로트맨 렌즈)

  • 김재흥;조춘식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1108-1115
    • /
    • 2004
  • A new type of a Rotman lens is presented in this paper fur millimeter-wave applications, such as collision avoidance radar. A dielectric slab Rotman lens is proposed to reduce the conductor loss and to create an appropriate farm for favorable implementation at millimeter-wave frequency. The proposed lens consists of a dielectric slab and slot lines whereas the conventional lenses are constructed with parallel conducting plates. The dielectric slab Rotman lens excited in TE$\_$0/ mode shows a high degree of confinement for the fields, low dispersion, and has an appropriate feed structure. A prototype lens has been designed and fabricated with 9 beam ports and 9 array ports together with 9 tapered slot antennas. This lens has been tested in the range from 10 GHz to 15 GHz and the measured beam widths are about 15$^{\circ}$ at 13 GHz. The measurements also show low mutual coupling between beam ports and an efficiency of about 34.6 %. The overall performance is comparable to that of conventional Rotman lenses even though the prototype was tested at lower than desired frequencies in the microwave frequency range due to our limited resources for fabrications and measurements. It is expected that at millimeter-wave frequency the dielectric slab Rotman lens will have lower conductor loss and lower mutual coupling than conventional Rotman lenses.an lenses.

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면내 공동의 존재에 따른 선량분포의 변화측정)

  • Jo, Jeong-Hui;Bang, Dong-Wan;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed . This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement, of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and $20.6\%$ for the CO-60, 4MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions the larger beam reductions occur. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF

Observation of dispersion-like signal based on velocity-selsctive saturated absorption spectroscopy and frequency stabilization of diode laser (속도선택 포화흡수분광을 이용한 분산형 신호의 관측 및 반도체 레이저의 주파수안정화)

  • Park, Sang-Eon;Cho, Hyuck;Kwon, Taeg-Yong;yang, Sung-Hoon;Lee, Ho, Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.158-164
    • /
    • 2001
  • We observed a velocity-selective saturated absorption spectrum when the pump beam intersects the probe beam at a finite angle with a saturated absorption spectroscopic configuration in the cesium vapor cell. And we also observed a dispersion-like signal by measuring the difference between two velocity-selective absorption spectra produced by two parallel probe beams intersected by one pump beam. The dispersion-like signal was changed with the crossing angle and the crossing position of the pump and probe beams and compared with the calculated result. The dispersion-like signal was used as a frequency discriminator, and the laser could be frequency-stabilized without any frequency modulation. As a result, the square root of Allan variance was $\sigma_y(\tau=1s)=7$\times10^{-12}$, for the sampling time of 1 s.of 1 s.

  • PDF

Measurement of Fine 6-DOF Displacement using a 3-facet Mirror (삼면반사체를 이용한 6자유도 미소 변위 측정)

  • 박원식;조형석;변용규;박노열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.50-50
    • /
    • 2000
  • In this paper, a new measuring system is :proposed which can measure the fine 6-DOF displacement of rigid bodies. Its measurement principle is based on detection of laser beam reflected from a specially fabricated mirror that looks like a triangular pyramid having an equilateral cross-sectional shape. The mirror has three lateral reflective surfaces inclined 45$^{\circ}$ to its bottom surface. We call this mirror 3-facet mirror. The 3-facet mirror is mounted on the object whose 6-DOF displacement is to be measured. The measurement is operated by a laser-based optical system composed of a 3-facet mirror, a laser source, three position-sensitive detectors(PSD). In the sensor system, three PSDs are located at three corner points of a triangular formation, which is an equilateral triangular formation tying parallel to the reference plane. The sensitive areas of three PSDs are oriented toward the center point of the triangular formation. The object whose 6-DOF displacement is to be measured is situated at the center with the 3-facet mirror on its top surface. A laser beam is emitted from the laser source located at the upright position and vertically incident on the top of the 3-fatcet mirror. Since each reflective facet faces toward each PSD, the laser beam is reflected at the 3-facet mirror and splits into three sub-beams, each of which is reflected from the three facets and finally arrives at three PSDs, respectively. Since each PSD is a 2-dimensional sensor, we can acquire the information on the 6-DOF displacement of the 3-facet mirror. From this principle, we can get 6-DOF displacement of any object simply by mounting the 3-facet mirror on the object. In this paper, we model the relationship between the 6-DOF displacement of the object and the outputs of three PSDs. And, a series of simulations are performed to demonstrate the effectiveness of the proposed method. The simulation results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects.

  • PDF

Hard- and soft-tissue profiles of the midface region in patients with skeletal Class III malocclusion using cone-beam computed tomography multiplanar-reconstructed image analysis

  • Kim, Bomi;Lee, Hyung-Chul;Kim, Seong-Hun;Kim, Yongil;Son, Woosung;Kim, Seong Sik
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.143-152
    • /
    • 2018
  • Objective: This study examined cone-beam computed tomography (CBCT)-derived multiplanar-reconstructed (MPR) cross-sections to clarify the salient characteristics of patients with skeletal class III malocclusion with midface deficiency (MD). Methods: The horizontal and sagittal plane intersection points were identified for middle-third facial analysis in 40 patients in the MD or normal (N) groups. MPR images acquired parallel to each horizontal plane were used for length and angular measurements. Results: A comparison of the MD and N groups revealed significant differences in the zygoma prominence among female patients. The convex zygomatic area in the N group was larger than that in the MD group, and the inferior part of the midface in the N group was smaller than that in the MD group for both male and female patients. A significant difference was observed in the concave middle maxillary area among male patients. Conclusions: This study was conducted to demonstrate the difference between MD and normal face through MPR images derived from CBCT. Male patients in the MD group had a more flattened face than did those in the N group. Female patients in the MD group showed a concave-shaped lower section of the zygoma, which tended to have more severe MD. These findings indicate that orthognathic surgery to improve skeletal discrepancy requires different approaches in male and female patients.

Design of the Near Field Microwave Guide Type of Probe Having Enhanced High Transmission Efficiency and Smaller Beam Spot Area (고 투과 효율과 소형 빔 스팟 면적을 갖는 근접장 마이크로웨이브 도파관 탐침의 설계)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1058-1063
    • /
    • 2015
  • In this article, we propose a near field microwave scanning probe structure in which two short conducting rods are attached to the center of the ridged(H-type) aperture, thereby reducing significantly the beam spot area while maintaining the high transmission efficiency through the output coupling H-type(ridged) aperture. Here the two short parallel conducting rods seem to play an important role of concentrating the transmitted electromagnetic energy through the H-type aperture and so reducing the beam area for high resolution. For validation of the proposed theory, the near field waveguide probe is fabricated according to the simulated results and its return loss characteristics versus frequencies are measured. The comparison between theory and experiment is seen to be in good agreements.