• 제목/요약/키워드: Parallel AC to DC Converter

Search Result 69, Processing Time 0.022 seconds

Power Control Method for Reducing Circulating Current in Parallel Operation of DC Distribution System

  • Shin, Soo-Cheol;Lee, Hee-Jun;Kim, Young-Ho;Lee, Jung-Hyo;Lee, Taeck Kie;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1212-1220
    • /
    • 2013
  • In general, for a large power system like DC distribution system for buildings, several power converters are modularized for parallel operation. However, in parallel operation, inconsistency of parameters in each module causes circulating current in the whole system. Circulating current is directly related to loss, and, therefore, it is most important for the safety of the power system to supply the suitable current to each module. This paper proposes a control method to reduce circulating current caused during parallel operation. Accordingly, the validity of parallel operation system including response characteristics and normal state was verified by simulation and experiment result.

AC/DC Resonant Converter to Control for DC Arc furnace (직류 전기아크로를 제어하기 위한 전원장치로서의 AC/DC 공진형 컨버터)

  • ;;Jaan Jarvik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • When solving the problems of electric power quality the converters with high Power factor are useful for the DC arc furnace power supply. In this paper, resonant converters of 50(60) Hz AC to DC arc described, where in each period of network voltage the capacitor and inductor of an oscillatory circuit are switched from series into parallel and vice versa parametrically. The duration of series and parallel connection and also the transformation ratio are dependent on load. Parallel oscillatory circuit restricts the short circuit current. These converters have high power factor from no-load to short-circuit and fit very well to supply are furnaces.

Half Load-Cycle Worked Dual SEPIC Single-Stage Inverter

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei;Zheng, Chang-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • The two-stage converter is widely used in traditional DC/AC inverter. It has several disadvantages such as complex topology, large volume and high loss. In order to overcome these shortcomings, a novel half load-cycle worked dual SEPIC single-stage inverter, which is based on the analysis of the relationship between input and output voltages of SEPIC converters operating in the discontinuous conduction mode (DCM), is presented in this paper. The traditional single-stage inverter has remarkable advantages in small and medium power applications, but it can’t realize boost DC/AC output directly. Besides one pre-boost DC/DC converter is needed between the DC source and the traditional single-stage inverter. A novel DC/AC inverter without pre-boost DC/DC converter, which is comprised of two SEPIC converters, is studied. The output of dual SEPIC converters is connected with anti-parallel and half load-cycle control is used to realize boost and buck DC/AC output directly and work properly, whatever the DC input voltage is higher or lower than the AC output voltage. The working principle, parameter selection and the control strategy of the inverters are analyzed in this paper. Simulation and experiment results verify the feasibility of the new inverter.

Integrated Operation of Power Conversion Module for DC Distribution System (직류 배전 시스템을 위한 전력 변환 모듈의 통합 운전)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hong, Suk-Jin;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.240-248
    • /
    • 2014
  • It is DC power that Output of renewable energy being recently developed and researched. Also, demand of DC power will expect to proliferate due to increase of digital load. Thus, DC distribution system providing high quality of power and reliability has emerged as a new distribution system. If the conventional distribution systems are substituted by proposed DC distribution system, the output of renewable energy can be connected with distribution systems under minimum power conversion. Therefore, in the event of connection with DC load, it can construct an efficient distribution system. In this paper, the integrated parallel operation of power conversion module for DC distribution system is proposed. Also, this paper proposed modularization of power conversion devices for DC distribution system and power control for parallel operation of large capacity system. DC distribution system consists of three power conversion modules such as AC/DC power conversion module 2 set, ESS module 1 set. DC distribution system controls suitable operation depending on the status of the DC power distribution system and load. Integrated operation of these systems is verified by simulation and experiment results.

Development of Single Phase PWM Converter for AC Traction System (교류 철도 차량 시스템용 단상 PWM Converter 개발)

  • Min, S.S.;Cha, J.D.;Hong, S.W.;Kim, S.W.;Park, Y.C.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.505-508
    • /
    • 1994
  • This paper describes an implementation of a single phase PWM ac/dc converter whose control scheme can be directly applied to the rectification of ac traction system. Power circuit using self-commutated switching devices(GTO) provides input power factor correction with dc voltage regulation. Effective compensation of load variations and line disturbance can be accomplished by real time instantaneous control of ac input current and dc link voltage using 32 bit floating point DSP. Parallel operation of two converters reduces the input line current ripple. Experimental results of the two parallel converter system are shown in the 20KW range for the verification of the system.

  • PDF

High Power Factor Three-phase AC-DC Flyback Converter Module Using Zero Voltage Switching (영전압 스위칭을 이용한 고역률 3상 AC-DC Flyback 컨버터 모듈)

  • Lee, J.P.;Choi, J.Y.;Song, J.H.;Choy, I.;Yoon, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2701-2703
    • /
    • 1999
  • A new mode of parallel operation of a modular 3-phase AC-DC Flyback converter for high power factor correction along with tight regulation is presented in this thesis. The converter offers input/output transformer isolation for safety, a unity input power factor for minimum reactive power, high efficiency and high power density for minimum weight and volume. Compared with previously developed 3-phase two-stage power converter, the advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper, a detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

A New Modular 3-phase AC-DC Flyback Converter for Telecommunication

  • Choi, J.Y.;Lee, J.P.;Choy, I.;Song, J.H.;Kim, T.Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.790-796
    • /
    • 1998
  • A novel mode of parallel operation of a modular 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper the detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

Design of the High Density Power Supply with Flat Transformer (Flat Transformer를 적용한 고밀도 전원장치 설계)

  • Baek J.W.;Kim J.H.;Yoo D.W.;Kim J.S.;Ryu M.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.248-256
    • /
    • 2005
  • This paper presents the design method of the DC/DC converter using flat transformer which is suitable for midium or large capacity and high density power supply. Flat transformer module is composed and manufactured of multi-transformers in parallel and has a number of parallel single turn secondary windings. Therefore, its leakage inductance is highly decreased and it is more suitable for high frequency operation than conventional one. In this paper, we manufactured and tested 750W AC/DC converter with variable output powers to verify the performance of the flat transformer.

The Parallel Operation of AC to DC PWM Converters for a High Speed Railway Train (고속전철용 입력 AC/DC PWM 컨버터의 병령운전)

  • Ryu, Hong-Je;U, Myeong-Ho;Kim, Jong-Su;Im, Geun-Hui;Won, Chung-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.272-281
    • /
    • 2000
  • This paper deals with the parallel operation of several numbers of PWM converters for a high speed railway train application. Several considerations are made to reduce the transformer interaction which can cause a current control problem in severe case. Also, in this paper, novel control strategy is proposed to achieve a harmonic free primary-side current control under a light load condition using one current sensor independent of the number of converters. In addition, the modified predictive current controller, which is suitable to a digital current controller with a relatively large sampling period, is used. Finally, to verify the system validity, digital control system with TMS320C44 micro-processor and small scale simulator are made and tested.

  • PDF

A Study on the BESS of Stand-alone Hybrid Streetlight (독립형 하이브리드 가로등의 BESS 연구)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we study the BESS of a standalone hybrid street light. The proposed BESS proposed a BESS with the function of efficiently charging irregularly generated power from two or more generators. AC generated by wind power is converted to DC using an AC / DC converter and then to a voltage that can charge the battery through the DC / DC converter. The lack of voltage and current, which is a disadvantage of the MPPT method used in solar power generation, is compensated by the DC value of wind power generation. The compensation method is to convert the DC generated from solar power into a voltage suitable for charging the battery through a DC / DC converter, and then connect the DC generated in wind power in parallel to compensate for the insufficient current to charge the battery in a short time. Allow this to begin. By securing the maximum charging time, the usage time of the stand-alone hybrid street light is huge. Experimental results show that the battery has a short charging time and can be efficiently applied to battery-dependent standalone hybrid street lights.