• Title/Summary/Keyword: Parallax

Search Result 252, Processing Time 0.025 seconds

Fusion of point cloud and integral-imaging technique for full-parallax 3D display (완전시차를 가지는 3 차원 디스플레이를 위한 포인트 클라우드와 집적영상기술의 융합)

  • Hong, Seokmin;Kang, Hyunmin;Oh, Hyunju;Park, Jiyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.292-294
    • /
    • 2022
  • 본 논문은 3 차원 이미징 기술과 컴퓨터 그래픽스 기반의 시뮬레이션 분야에서 매우 성공적인 두 기술의 융합을 기반으로 진행한 연구를 제안한다. 먼저 3 차원 디스플레이 시스템에 재생할 집적 영상 이미지를 생성하는 방법에 대해 설명한다. 이는 3 차원 포인트 클라우드에서 가상 핀홀 배열로 입사각을 역투영하는 계산방식을 통해 해당 이미지를 생성한다. 우리는 재생되는 3 차원 영상의 초점면을 자유롭게 선택하는 방법에 대해서도 설명한다. 또한, 복수의 관찰자에게 동시에 다양한 시점 정보를 기반으로 몰입감 넘치는 3 차원 영상을 제공하는 3 차원 디스플레이 시스템을 소개하고, 다양한 실험결과를 기반으로 결론을 제시한다.

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

A Real-Time Stereoscopic Image Conversion Method Based on A Single Frame (단일 프레임 기반의 실시간 입체 영상 변환 방법)

  • Jung Jae-Sung;Cho Hwa-Hyun;Choi Myung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, a real-time stereoscopic image conversion method using a single frame from a 2-D image is proposed. The Stereoscopic image is generated by creating depth map using vortical position information and parallax processing. For a real-time processing of stereoscopic conversion and reduction of hardware complexity, it uses image sampling, object segmentation by standardizing luminance and depth map generation by boundary scan. The proposed method offers realistic 3-D effect regardless of the direction, velocity and scene conversion of the 2-D image. It offers effective stereoscopic conversion using images suitable conditions assumed in this paper such as recorded image at long distance, landscape and panorama photo because it creates different depth sense using vertical position information from a single frame. The proposed method can be applied to still image because it uses a single frame from a 2-D image. The proposed method has been evaluated using visual test and APD for comparing the stereoscopic image of the proposed method with that of MTD. It is confirmed that stereoscopic images conversed by the proposed method offers 3-D effect regardless of the direction and velocity of the 2-D image.

An Atlas Generation Method with Tiny Blocks Removal for Efficient 3DoF+ Video Coding (효율적인 3DoF+ 비디오 부호화를 위한 작은 블록 제거를 통한 아틀라스 생성 기법)

  • Lim, Sung-Gyun;Kim, Hyun-Ho;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.665-671
    • /
    • 2020
  • MPEG-I is actively working on standardization on the coding of immersive video which provides up to 6 degree of freedom (6DoF) in terms of viewpoint. 3DoF+ video, which provides motion parallax to omnidirectional view of 360 video, renders a view at any desired viewpoint using multiple view videos acquisitioned in a limited 3D space covered with upper body motion at a fixed position. The MPEG-I visual group is developing a test model called TMIV (Test Model for Immersive Video) in the process of development of the standard for 3DoF+ video coding. In the TMIV, the redundancy between a set of input view videos is removed, and several atlases are generated by packing patches including the remaining texture and depth regions into frames as compact as possible, and coded. This paper presents an atlas generation method that removes small-sized blocks in the atlas for more efficient 3DoF+ video coding. The proposed method shows a performance improvement of BD-rate bit savings of 0.7% and 1.4%, respectively, in natural and graphic sequences compared to TMIV.

DETERMINATIONS OF ITS ABSOLUTE DIMENSIONS AND DISTANCE BY THE ANALYSES OF LIGHT AND RADIAL-VELOCITY CURVES OF THE CONTACT BINARY - I. V417 Aquilae (접촉쌍성의 광도와 시선속도곡선의 분석에 의한 절대 물리량과 거리의 결정 -1. V417 Aquilae)

  • 이재우;김천휘;이충욱;오규동
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.73-82
    • /
    • 2004
  • New photometric and spectroscopic solutions of W-type overcontact binary V 417 Aql were obtained by solving the UBV light curves of Samec et al. (1997) and radial-velocity ones of Lu & Rucinski (1999) with the 2003 version of the Wilson-Devinney binary code. In the light curve synthesis the light of a third-body, which Qian (2003) proposed, was considered and obtained about 2.7%, 2.2%, and 0.4% for U, B, and V bandpasses, respectively. The model with third-light is better fitted to eclipse parts than that with no third-light. Absolute dimensions of V417 Aql are determined from our solution as $M_1$= 0.53 $M_{*}$, $M_2$= 1.45 $M_{*}$, $R_1$= 0.84 $R_{*}$, and $R_2$= 1.31 $M_{*}$, and the distance to it is deduced as about 216pc. Our distance is well consistent with that (204pc) derived from Rucinski & Duerbeck's (1997) relation, $M_{v}$ = $M_{v}$(log P, B-V), but is more distant than that (131$\pm$40pc) determined by the Hipparcos trigonometric parallax. The difference may result from the relatively large error of Hipparcos parallax for V 417 Aql.l.

3D Environmental Walkthrough Using The Integration of Multiple Segmentation Based Environment Models (다중 분할 기반 환경 모델의 통합에 의한 3차원 환경 탐색)

  • Ryoo, Seung-Taek
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.105-115
    • /
    • 2005
  • An environment model that is constructed using a single image has the problem of a blurring effect caused by the fixed resolution, and the stretching effect of the 3D model caused when information that does not exist on the image occurs due to the occlusion. This paper introduces the registration and integration method using multiple images to resolve the above problem. This method can represent parallax effect and expand the environment model to represent wide range of environment. The segmentation-based environment modeling method using multiple images can build a detail model with optimal resolution.

  • PDF

Real-Time Augmented Reality on 3-D Mobile Display using Stereo Camera Tracking (스테레오 카메라 추적을 이용한 모바일 3차원 디스플레이 상의 실시간 증강현실)

  • Park, Jungsik;Seo, Byung-Kuk;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.362-371
    • /
    • 2013
  • This paper presents a framework of real-time augmented reality on 3-D mobile display with stereo camera tracking. In the framework, camera poses are jointly estimated with the geometric relationship between stereoscopic images, which is based on model-based tracking. With the estimated camera poses, the virtual contents are correctly augmented on stereoscopic images through image rectification. For real-time performance, stereo camera tracking and image rectification are efficiently performed using multiple threads. Image rectification and color conversion are accelerated with a GPU processing. The proposed framework is tested and demonstrated on a commercial smartphone, which is equipped with a stereoscopic camera and a parallax barrier 3-D display.

A GPU based Rendering Method for Multiple-view Autostereoscopic Display (무안경식 다시점 입체 디스플레이를 위한 GPU기반 렌더링 기법)

  • Ahn, Jong-Gil;Kim, Jin-Wook
    • Journal of the HCI Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • 3D stereo display systems gain more interests recently. Multiple-view autostereoscopic display system enables observers to watch stereo image from multiple viewpoints not wearing specific devices such as shutter glasses or HMD. Therefore, the Multiple-view autostereoscopic display is being spotlighted in the field of virtual reality, mobile, 3D TV and so on. However, one of the critical disadvantages of the system is that observer can enjoy the system only in a small designated area where the system is designed to work properly. This research provides an effective way of GPU based rendering technique to present seamless 3D stereo experiences from an arbitrary observer's view position.

  • PDF

RPC-based epipolar image resampling of Kompsat-2 across-track stereos (RPC를 기반으로 한 아리랑 2호 에피폴라 영상제작)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • As high-resolution satellite images have enabled large scale topographic mapping and monitoring on global scale with short revisit time, agile sensor orientation, and large swath width, many countries make effort to secure the satellite image information. In Korea, KOMPSAT-2 (KOrea Multi-Purpose SATellite-2) was launched in July 28 2006 with high specification. These satellites have stereo image acquisition capability for 3D mapping and monitoring. To efficiently handle stereo images such as stereo display and monitoring, the accurate epipolar image generation process is prerequisite. However, the process was highly limited due to complexity in epipolar geometry of pushbroom sensor. Recently, the piecewise approach to generate epipolar images using RPC was developed and tested for in-track IKONOS stereo images. In this paper, the piecewise approach was tested for KOMPSAT-2 across-track stereo images to see how accurately KOMPSAT-2 epipolar images can be generated for 3D geospatial applications. In the experiment, two across-track stereo sets from three KOMPSAT-2 images of different dates were tested using RPC as the sensor model. The test results showed that one-pixel level of y-parallax was achieved for manually measured tie points.

CALIBRATION OF STELLAR PARAMETERS OF 85 PEG SYSTEM

  • Bach, Kiehunn;Kim, Yong-Cheol;Demarque, Pierre
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • We have investigated the evolutionary status of 85 Peg within the framework of standard evolutionary theory. 85 Peg has been known to be a visual and spectroscopic binary system in the solar neighborhood. In spite of the accurate information of the total mass (${\sim}1.5M_{\odot}$) and the distance (${\sim}12pc$) from the HIPPARCOS parallax, it has been undetermined an individual mass, therefore the evolved status of the system. Moreover, the coupled uncertainties of chemical composition and age, make matters worse in predicting an evolutionary status of the system. Nevertheless, we computed the various possible models for 85 Peg, and then calibrated stellar parameters by adjusting to the recent observational data. Our modelling computation has included recently updated input physics and stellar theory such as opacity, equation of state, and chemical diffusion. Through a statistical assessment, we have derived a confident parameter set as the best solution which minimized $X^{2}$ within the observational error domain. Most of all, we found that 85 Peg is not a binary system but a triple system with an unseen companion 85 Peg $B_{b}\;{\sim}0.16M_{\odot}$. The aim of the present paper is (1) to provide a complete modelling of the stellar system based on the evolutionary theory, and (2) to constrain the physical dimensions such as mass, metallicity and age.