• Title/Summary/Keyword: Paradoxornis webbiana

Search Result 7, Processing Time 0.019 seconds

Fine Structure of the Spermatogenic Cells during the Spermiogenesis of Paradoxornis webbiana (붉은머리 오목눈이 (Paradoxornis webbiana)의 정자변태 과정 중 정자형성세포의 미세구조)

  • Lee, Jung-Hun;Hahm, Kyu-Hwang
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.245-256
    • /
    • 2001
  • The morphological characteristics of spermatogenic cells during the spermiogenesis of Paradoxornis webbiana were studied by transmission electron microscope. Spermiogenesis of P. webbiana was divided into ten phase. The chromatin granules became fibrous granules at the Golgi phase, gradually condensed at the cap phases, condensed as a stick at the acrosomal phase, and finally, a perfect nucleus was formed at the maturation phase. The formation of sperm tail began at the early Golgi phase, and completed at the late maturation phase. In particular, the dense materials existed in the sperm neck, which is wedged between the tip of segmented columns and the first mitochondria of the middle piece. The axone in the neck were surrounded by the dense materials. The axonema in spermatozoon contains a 9+2 arrangement of microtubules: 9 doublets, and 2 central single microtubules. Mitochondrial bundles of middle piece were composed of a pair of arms, which surrounded the axone of the middle piece by the $15^{\circ}$ angled-helical structure. The outer membrane of mitochondria were surrounded by microtubules in plasma membrane of the sperm. The undulating membrane had a helical structure, and the sperm plasma membrane was surrounded by undulating membrane.

  • PDF

Characteristics of Wildbirds Habitat of Artificial Green Corridor in Gangseo-gu, Seoul (서울시 강서구 조성녹지축의 야생조류 서식처 특성 연구)

  • Choi, Jin-Woo;Lee, Kyong-Jae
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.47-59
    • /
    • 2010
  • This study was to examine the characteristics of wirdbirds habitat for improvement plan in green corridor. The target site, Gangseo-gu artificial green corridor was set up with the structure in which small scale of core green space with Goongsan and Yeomchang neighborhood parks in urbanized city was connected with the artificial green space with Gongamnaru, Hwanggeumnae neighborhood parks with 28~42.5 m in width. Wild birds six~eleven species; Dendrocopos spp, Paradoxornis webbiana, Parus major, Phasianus colchicus, etc. were observed in core green, but wild birds of two~five species: Columba livuia, Passer montanus, Pica pica, Hypsipetes amaurotis, etc. were observed in artificial green space. Thus wild birds of artificial and generalist species only moved in artificial green space. The artificial green space where vegetation structure was consisted of single-layer with poorness chose target species laying stress on generalist species and edge species of Parus major, P. palustris, Paradoxornis webbiana etc. for short-term and interior species of Dendrocopos major, Picus canus, etc. for long-term. The result suggested enhancement methods for target species's habitat in green corridor: to secure at least a corridor 30 meters in artificial corridor, to secure ecological pond, to offer the various shelterer and environment of prey-resources through the multi-layer structure.

Classification of Avian Habitats Based on Vegetation Types in Urban and Natural Streams (도심하천과 자연하천의 식생형에 따른 조류 서식지 유형분석)

  • Pyo, Jae-Hun;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.67-77
    • /
    • 2011
  • To classify the relationship between riparian vegetation type and bird habitat, we studied the vegetation and avian species in the three streams(Anyang Stream, Gap Stream, Seom River), located in middle province. Five different vegetation types - Woodland type, Shrub type, Tall and wet grassland type, Low and dry grassland type and Cropland - were identified. The habitats of avian species were highly correlated with vegetation type. Streptopelia orientalis and Hypsipetes amaurotis were found in woodland. Both Paradoxornis webbiana and Phoenicurus auroreus were mainly found in shrub. Tall and wet grassland were preference habitats of Ixobrychus sinensis, Acrocephalus arundinaceus, while, low and dry grassland were occupied by Phasianus colchicus, Falco tinnunculus. Cropland were used as breeding and feeding sites for Egretta alba modesta, Anas poecilorhyncha, Anthus spinoletta. Distribution patterns of avian species were clearly divided by vegetation type and site characteristics in the stream.

Selecting Target Species for Urban Ecological Network Construction - Focus on Pangyo New Town - (생태네트워크 구축을 위한 목표종 선정에 관한 연구 - 판교신도시를 사례로 -)

  • Choi, Hee-Sun;Kim, Hyun-Ae;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.12-24
    • /
    • 2008
  • With recent emphasis on the creation of environment-friendly new towns, introduction of ecological facilities for habitation and migration of wild animal's species is requested when developing new towns. In order to introduce such facilities, building an eco-network within the site based on the connectivity of the source area and habitats is essential in new town development. Therefore, this study mainly aimed at selecting species targeted for building an eco-network in Pangyo new town, which is intended to be an environment-friendly city. Therefore, criteria for selecting target species were generated. Then, species observed within the site through field surveys and literature review was evaluated based on the selection criteria and items. By totaling the score, a list of appropriate targeted species was finalized. Among species surveyed and observed in the site, appropriate target species that may be selected for Pangyo new town's eco-network include Falco tinnunculus interstinctus, Accipiter soloensis, Picus canus, Paradoxornis webbiana, Parus palustris, Parus ater, Parus major and Passer montanus Egretta in birds, Asiatic chipmunk, Nyctereutes procyonoides in mammals. For Pangyo new town, it is essential to create living environment and build a network for major wild animal species within the site based on target species. This will play a crucial role in building a reasonable ecological network enabling harmonious co-existence between mankind and nature. In order to build an ecological network successfully, follow-up studies need to be conducted on restoration technology and methods required for creating habitats appropriate to target species.