• Title/Summary/Keyword: Parachute modeling

Search Result 3, Processing Time 0.023 seconds

9-DOF Modeling and Turning Flight Simulation Evaluation for Parachute (9-DOF 낙하산 모델링 및 선회비행 시뮬레이션 검증)

  • Lee, Sang-Jong;Min, Byoung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.688-693
    • /
    • 2016
  • This paper describes the parachute dynamics modeling and simulation results for the development of training simulator of a HALO (High Altitude Low Opening) parachute, which is currently in use for military purposes. The target parachute is a rectangular shaped parafoil and its dynamic model is derived based on the real geometry data as the 9-DOF nonlinear equations of dynamics. The simulation was conducted through the moment of inertia and its aerodynamic derivatives to reflect the real characteristics based on the MATLAB/Simulink. In particular, its modeling includes the typical characteristics of the added mass and moment of inertia, which is shown in the strong effects in Lighter-Than-Air(LTA) flight vehicle. The proposed dynamic modeling was evaluated through the simulation under the spiral turning flight conditions of the asymmetric control inputs and compared with the performance index in the target parachute manual.

Deploy Position Determination for Accurate Parachute Landing of a UAV (무인기의 정밀 낙하산 착륙을 위한 전개지점 결정)

  • Kim, Inhan;Park, Sanghyuk;Park, Woosung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.465-472
    • /
    • 2013
  • In this paper, we suggest how to determine the parachute deploy position for accurate landing of a UAV at a desired position. The 9-DOF dynamic modeling of UAV-parachute system is required to construct the proposed algorithm based on neural network nonlinear function approximation technique. The input and output data sets to train the neural network are obtained from simulation results using UAV-parachute 9-DOF model. The input data consist of the deploy position, UAV's velocity, and wind velocity. The output data consist of the cross range and down range of landing positions. So we predict the relative landing position from the current UAV position. The deploy position is then determined through distance compensations for the relative landing positions from the desired landing position. The deploy position is consistently calculated and updated.

Design of a Robust Precision Aerial Delivery System Soft Landing Algorithm (외란에 강인한 정밀공중물자수송시스템 연착륙 알고리즘 설계)

  • Kim, Taewook
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-87
    • /
    • 2022
  • The Precision Aerial Delivery System is an instrument designed to improve the poor landing accuracy of aerial delivery system with conventional circular parachutes, and is equipped with an Airborne Guidance Unit to safely transport supplies to the desired destination. Currently, the landing accuracy of the PADS product is reported as CEP50 100m and also differs significantly, depending on the actual topography and weather environment. In this study, HILS was constructed based on the 6DOF nonlinear modeling of PADS to analyze the maneuver characteristics of Ram Air Parachute under wind environments. By using the new algorithm a precision soft landing algorithm including Energy Management and Final Approach is designed. HILS results show that it is possible to achieve a precise soft landing within CEP50 40m, and it can be exploited to develop an actual PADS drop test.