• Title/Summary/Keyword: Parabolic antenna

Search Result 52, Processing Time 0.021 seconds

A Parabolic Edge Planar Monopole Antenna for Indoor Digital TV Reception (디지털 TV 실내 수신을 위한 포물선 엣지 형태의 평면 모노폴 안테나)

  • Leem, Jong-Ye;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1225-1232
    • /
    • 2009
  • In this paper, a parabolic edge planar monopole antenna for indoor DTV reception is presented. The antenna has broadband property with the planar monopole and ground of parabolic edges. It is designed close to self-complementary structure as changing curvature of edges of monopole and ground. Monopole and ground conductors of the antenna are on the same plane, and excited through CPW feeding. It is fabricated on an FR4 dielectric substrate of $\varepsilon_r=4.4$, and the dimension is $40\;mm{\times}200\;mm{\times}1.6\;mm$. Return loss is larger than 10 dB in 470~806 MHz. Maximum gain is 1.86 dBi on E-plane at 810 MHz and 3.86 dBi on H-plane at 600 MHz.

Design of the Parabolic Reflector Antenna with Bended Elliptical Conductor Plate Feed (절곡된 타원형 도체평판 급전부를 갖는 포물선 반사판 안테나 설계)

  • Kim, Byung-Mun;Yun, Li-Ho;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.989-996
    • /
    • 2017
  • The proposed directional pencil beam antenna consists of a waveguide feeder with bended elliptical conductor plate feed and a parabolic curved reflector. Two rectangular apertures located at the broad wall near the end of the feed waveguide inserted from behind the reflector are located at the focus of the reflector and emit electromagnetic energy with bended elliptical conductor plate. This plate is designed to reflect electromagnetic energy primarily and to face the main reflector. The two rectangular apertures located at the waveguide end have inwardly protruding tabs for impedance matching of the antenna system, the shape of the tabs is a truncated oval. The proposed parabolic reflector antenna has a diameter of 400 mm and a focal length of 134.23 mm. The antenna gain is 33.68 dBi at the center frequency of 16.5 GHz, the beam width is $3.3^{\circ}$ and the reflection loss is -15 dB. Using the HFSS-IE, simulation results are performed to validate the proposed antennas.

Near-field Analysis of Dual Parabolic Cylindrical Reflector System for Compact Antenna Test Range (콤팩트 안테나 테스트 레인지용 파라볼릭 원통형 복반사경 시스템의 근접전계 해석)

  • Park, Jae-Hyun;Choi, Hak-Keun;Jeong, Ji-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.237-244
    • /
    • 2010
  • In this paper, the dual parabolic cylindrical reflector systems are analyzed as the reflector system for the CATR(Compact Antenna Test Range) facility. The near-field at the test zone of the CATR is calculated by using the PO(Physical Optics) approximation. The CATR has to provide an uniform plane wave with the minimum amplitude and phase ripple and the low cross polarization. Therefore, in this paper, the near-field pattern are calculated, and the ripple and taper of the field and the cross polarization are investigated with the position of the subreflector and the test region. It is confirmed that the analysis results can be used for the design of the CATR with the dual parabolic cylindrical reflector.

Design and Fabrication of Ultrawideband Spinning Direction Finding Antenna for Airborne Applications (항공용 초광대역 회전 방향 탐지 안테나 설계 및 제작)

  • Kim, Jeeheung;Ryu, Hongkyun;Park, Young-Ju;Lee, Byungnam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.320-323
    • /
    • 2018
  • Herein, an ultrawideband spinning direction finding (DF) antenna was designed and fabricated for airborne applications. The proposed antenna is designed by dividing the low-band (UHF - L band) and high-band (S - Ka band) antennas to cover the ultrawideband frequency range (UHF - Ka band). For the high-band antenna, an LPDA antenna fed offset-parabolic-reflector antenna is applied. In the low-band antenna, two LPDA antenna elements are arrayed in front of the reflector of the high-band antenna without increasing to the full antenna size. The low- and high-band gains of the fabricated antenna were measured as 8.76 dBi and 24.55 dBi on average, respectively. The antenna was fabricated with the dimensions of 437 mm in diameter and 358 mm in height. Consequently, we confirmed that the designed antenna is appropriate for the spinning DF antenna in terms of the affordable size for installing on an airplane, as well as the high gain and narrow beamwidth.

Multi-beam Antenna Analysis

  • Lee, Jeom-Hun;Oh, Seung-Hyeub
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2004
  • This paper describes the antenna analysis of the multi-beam for communicationsatellite. The design core parameters of the antenna system are optimal antennadiameter, feed horn type and hom size, F/D, and the coordinate of offset horns. Thepaper deals with the method to determine design core parameters of optimal antennadiameter, feed horn type and horn size. F/D, and the coordinate of offset horns, andthe performances of design result.

Printed Reflectarray Antenna Design for Parabolic Reflector Volume Reduction (파라볼릭 반사기 체적 축소용 프린트 리플렉트어레이 안테나 설계)

  • Moon, Sang-Man;Kim, In-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • In this study, we discuss about the printed reflectarray antenna design for parabolic reflector volume reduction. For this, we simulated and measured the phase characteristics of the unit array element of reflectarray antenna using waveguide simulator. As a results, the maximum phase variation is $298^{\circ}$ by simulation, the average phase variation is $309^{\circ}$ by measurement in 10GHz. And the printed Reflectarray antenna gain is 28.3dBi, 3dB beamwidth is E-plane $5.1^{\circ}$, H-plane $5.2^{\circ}$, sidelobe level is E-plane -11.4dB, H-plane -17.6dB.

Design of Dual Mode Conical Horn Antennas (복 모드 원추 혼 안테나의 설계)

  • 최학근;박종호;박정희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1573-1581
    • /
    • 1988
  • In this paper, the analysis on the dual mode conical horn antennas is made to realize the optimum horn as the primary feed of the offset parabolic antenna for the domestic broadcasting satellite. Such analysis can give rise to the approximate equations and graphs on the beam width, which makes it possible to design the desired conical horn. It has been shown that the radiation charateristics of designed horn antenna built with the dielectric band inside the horn. The designed dual mode horn antenna may provide the useful basis to practical usage of the antenna in the domestic satellite broadcasting communication systems.

  • PDF

Design of Stacked Microstrip Antennal for DBS Reception (DBS 수신용 적층된 마이크로스트립 안테나 설계)

  • 전주성;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.618-627
    • /
    • 1999
  • In this paper, we have researched designing a microstrip antenna, which will be replaced for a parabolic antenna. A microstrip antenna has been used in extremely limited field, but if it is applied to practical life like a DBS receiving antenna, we expect that it will be used in various way. First of all, if we use a microstrip antenna for a DBS receiving antenna, it should be guaranteed characteristics of broadband frequency. Therefore, the goal of this paper is designing an antenna which guarantees broadband frequency band for a DBS reception. Also, experiment with Koreasat, we have researched the propriety of this antenna for the DBS receiving antenna.

  • PDF

Calculation for the pattern degradation of the parabolic reflector caused by both the surface roughness of the reflector and the structural misalignment (반사판의 표면거칠기와 구조의 오정렬에 의한 파라볼라 반사판 안테나 패턴 일그러짐 계산)

  • 김주완;김병성;남상욱;이충웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.36-44
    • /
    • 1995
  • For a parabolic reflector antenna, a simple method is presented for computing efficiently the average power pattern degradations caused by the surface roughness of the reflector and misalignments between the reflector and the feed. In this procedure, both nonuniform surface errors and nonuniform illuminations are employed. The assumptions to derive the expressions are that in each annular region of the antenna, the rms value of the surface roughness is known, and in a zone in a annular region, the phase error by misalignments is constant, and can be taken to its value at the center of the zone. Detailed parametric studies are performed with derived expressions to determine the effects of those errors and illumination tapers on parameters such as gain and sidelobe levels.

  • PDF

Design of Omnidirectional Antennas Composed of the Parabolic Reflector (파라볼라 반사경으로 구성된 옴니안테나 설계)

  • 이동진;최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1089-1095
    • /
    • 2003
  • In this paper, the 26 GHz band omnidirectional antenna that produces an isotropic radiation pattern in the azimuth plane and a directive radiation pattern in the elevation plane was designed by using reflector antennas. To investigate the reliability of the designed antenna, that was analyzed by using the aperture field method and the calculated value was compared with the measured value. An good agreement was achieved between the calculated characteristics and the experimental performance. We found that the designed antenna in this paper can be used as the omnidirectional antenna with reflectors and the analysis method in this paper can be used for the analysis of this type antenna.