• Title/Summary/Keyword: Paper strength

Search Result 9,614, Processing Time 0.036 seconds

Strength Evaluation of Rectangular CFT Stub Columns varing with Concrete Strength and Width-to-Thickness Ratio of Steel Tubes (콘크리트 강도 및 강관 폭두께비에 따른 각형 CFT 단주의 내력평가)

  • Shim, Jong-Seok;Han, Duck-Jeon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • Concrete-filled steel tube(CFT) columns have become popular for building construction due to not only composite effect of steel tube and infilled concrete, but also more economical. The purpose of this paper is to propose the applicable boundary formula of width-to-thickness ratio for rectangular steel tube as using CFT column. A parametric study was performed taking width-to-thickness ratio of rectangular steel tube and compressive strength of concrete as the main parameter. The strength of concrete are selected to 30, 60, 90MPa. The non-linear analysis was adopted in order to take into account the effect of concrete strength. Finally, from the test and analysis results, the effect of increasing strength according to concrete strength and width-to-thickness of steel tube and plastic behavior of specimens were verified distinctly.

Analysis of die strength for laser dicing (레이저 다이싱에 의한 die strength 분석)

  • Lee, Young-Hyun;Choi, Kyung-Jin;Bae, Sung-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.327-329
    • /
    • 2006
  • In this paper, the cutting qualities by laser dicing and fracture strength of a silicon die is investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bend test and is compared with the die strength by mechanical sawing. As a results, die strength by laser dicing shows a decrease of 50% in compared with die strength by mechanical sawing.

  • PDF

Study on the characteristics of shot peened material (쇼트피닝에 의한 재료의 특성에 관한 연구)

  • 이승호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.15-22
    • /
    • 1998
  • The effects of shot peening an the fatigue strength are studied in this paper. Applying the multistage shot peening on the material. the relation between the residual stress and fatigue strength compressive is investigated. Observing tensile strength elongation. reduction of area. hardness. and roughness. the results can be summarized as follows ; 1.The change of mechanical properties is small before and after the shot peening is carried out. The change of hardness is also small in high hardness material. 2.The surface roughness does not affect the fatigue strength. but the surface roughness is improved by multi-stage shot peening. 3.The fatigue strength of multi-stage shot peening material is 756MPa and is 1.78 times higher than that of un-peened material. 4.The maximum compressive residual strength of multi-stage shot peening material is -792MPa the fatigue strength seems to be improved by residual stress.

  • PDF

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

A New Form of Nondestructive Strength-Estimating Statistical Models Accounting for Uncertainty of Model and Aging Effect of Concrete

  • Hong, Kee-Jeung;Kim, Jee-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.230-234
    • /
    • 2009
  • As concrete ages, the surrounding environment is expected to have growing influences on the concrete. As all the impacts of the environment cannot be considered in the strength-estimating model of a nondestructive concrete test, the increase in concrete age leads to growing uncertainty in the strength-estimating model. Therefore, the variation of the model error increases. It is necessary to include those impacts in the probability model of concrete strength attained from the nondestructive tests so as to build a more accurate reliability model for structural performance evaluation. This paper reviews and categorizes the existing strength-estimating statistical models of nondestructive concrete test, and suggests a new form of the strength-estimating statistical models to properly reflect the model uncertainty due to aging of the concrete. This new form of the statistical models will lay foundation for more accurate structural performance evaluation.

Strength and Autogenous Shrinkage of High Strength Mortar Using Water Substituting Liquid

  • Han, Min-Cheol;Lee, Dong-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.538-546
    • /
    • 2011
  • This paper is to experimentally investigate the strength and autogenous shrinkage of high strength mortar with the 20 % of water?binder ratio(W/B). In this study, the water substituting liquid(WSL) was used including gasoline, light oil, lamp oil, edible oil, HFE, ethanol, methanol and acetone in order to explore changes in strength and autogenous shrinkage depending on WSL type and replacement. For fresh properties, the replacement of WSL did not affect the fluidity of mortar mixtures considerably, except for ethanol and methanol. However, the replacement of WSL resulted in a slight decrease in flexural and compressive strength. For autogenous shrinkage, the replacement of WSL led to reduce autogenous shrinkage, and especially, the replacement of edible oil led to reduce autogenous shrinkage significantly due to saponification between edible oil and cement.

Strength Prediction and Optimum Design of Internally Ring-Stiffened Tubular X-and T-Joints (내부 환보강 X형 및 T형 관이음부의 강도산정과 최적설계)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lee, Hyun-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.315-320
    • /
    • 2007
  • An effective reinforcement method for steel tubular joints having a large chord diameter is the use of internal ring stiffeners. This paper presents the results of a numerical study on the static strength of internally ring-stiffened tubular X- and T-joints subjected to brace axial compression loading. Nonlinear finite element analyses are used to compute the joint strength. The influence of geometrical parameters has been studied and the maximum reinforcement effect of a ring stiffener has been evaluated. A strength ratio is defined. by the ratio of ring-stiffened joint strength to unstiffened joint strength, and an equation for this strength ratio is derived by regression analysis. Design optimization for ring stiffener of tubular joints is carried out using metropolis genetic algorithm.

  • PDF

Shear Behavior of High-Strength Steel Reinforced Concrete Beams without Stirrups (고장력 주인장 철근을 사용한 전단보강이 없는 보의 전단성능에 관한 연구)

  • Shon, Young-Moo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • In these days, High-strength steel prevails throughout the construction fields for the benefit of structural and economical aspects. But high-strength steel is used by the simple calculation of flexural capacities for the purpose of reducing flexural reinforcement. So, this paper is mainly focused on the shear behavior of high-strength steel reinforced concrete beams without stirrups comparing with normal-strength steel reinforced concrete beams. Specimens were made and tested with the experimental parameters, such as steel yield strength, reinforcement ratios and minimum shear reinforcement. The main result was that not only area but also the yield strength of flexural reinforcement should be considered to predict the shear capacities of concrete beams. In addition, the experimental results were simulated by modified compression field theory analysis program, RESPONSE 2000. A good agreement was achieved between the test results and program analyses.

The Strength Characteristics of Polymer Composites Injection Parts for Lightness and Safety (경량화와 안전을 위한 폴리머 복합재료 사출품의 강도특성)

  • Yun, Yeo-Kwon;Kim, Jin-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper deals with strength of glass fiber reinforced plastics produced by shouting machine was investigated by universal testing instrument. We can obtain following results by performing the strength evaluation of polymer composite material according as varied environment temperature. The effect of environmental temperature on Strength properties was more sensitive in the weld specimen than parent. When changed environmental temperature, variation of strength in the parent was much bigger than it of weld specimen, that is, matrix in the parent, orientation in the specimen ware more sensitive to environmental strength. Tensile strength of polycarbonate matrix was similar regardless of mold temperature.

The Study on the Optimum Mix Design of the High-Strength Concrete in Site (고강도 콘크리트의 현장최적배합에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Kim, Dong-Seok;Ahn, Jae-Hyun;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.232-238
    • /
    • 1996
  • In this paper, the properties of high-strength concrete are described with respect to materials and mix conditions(water-cement ratio, chemical admixture, replacement of fly ash). As primary purposes of this study, the optimum mix design method of high-strength concrete to decrease unit cement contents is investigated, and the properties of fresh and hardened concretes are tested in terms of slump, air content and compressive strength. As results of this study, workability and strength development of the high-strength concrete depend on the water-cement ratio, replacement ratio of fly ash and dosage of the chemical admixture. The conditions which are proposed optimum mix design of the high-strength concrete show W/C 37%, S/A 42~45% and unit cement content 470~480kg/$\textrm{m}^3$. Based on the results, the applicability of high-strength concrete in site is clearly proved.

  • PDF