• 제목/요약/키워드: Paper packaging

검색결과 920건 처리시간 0.025초

혼합접착제 적용에 따른 골판지의 접착강도와 건조에너지 평가 (Evaluation of the Adhesive Strength and the Drying Energy of Corrugated Board Using a Mixed Adhesive)

  • 이지영;김철환;김은혜;박태웅;최재성
    • 펄프종이기술
    • /
    • 제48권3호
    • /
    • pp.51-56
    • /
    • 2016
  • The most widely used glue in a corrugator is starch, which is a natural polymer. This material needs thermal energy to achieve a binding force, so a heating section is installed in a corrugator. However, this heating section can cause quality problems in linerboards and corrugating medium and increase the production cost because of the high cost of fossil resources. Therefore, a new adhesive that provides the binding force at lower temperatures than the conventional one must be developed. In this study, SB-latex was selected as a co-adhesive and added to the starch solution. The addition of the SB-latex was determined based on the viscosity of the new adhesive. The adhesive strength and the drying energy reduction of a corrugated board were measured to evaluate the functionalities of the new adhesive. The addition of SB-latex was determined to be under 20% of the oven-dried starch based on the viscosity of the new adhesive. The adhesive strength was improved and the drying energy was reduced by applying the new adhesive.

표면처리에 의한 오일팜 EFB 기반 펄프몰드의 흡수특성 변화 (Changes in the Water Absorption Properties of Pulp Mold manufactured with Oil Palm EFB by surface treatments)

  • 김동성;성용주;김철환;김세빈
    • 펄프종이기술
    • /
    • 제47권1호
    • /
    • pp.75-83
    • /
    • 2015
  • The applicability of oil palm biomass, EFB(Empty Fruit Bunch) as raw materials for environmental friendly packaging material, pulp mold, was evaluated in this study. The changes in the water absorption properties of pulp mold by the addition of EFB and the surface treatments with PVA and AKD were analyzed by measuring the changes in the water absorption rate and the water contact angle. The each pulp mold sample was prepared by using laboratory wet pulp molder. And the water absorption rate of each samples were evaluated by measuring times for the absorption of a 0.1 ml water drop on the pulp mold sample surface. The addition of EFB to the pulp mold made of OCC resulted in the decrease of water absorption rate and the increase in the water contact angle. The surface treatments with PVA and AKD on the OCC pulp mold showed the significant reduction in the water absorption rate. However, in case of ONP pulp mold, the addition of EFB and the surface treatments with PVA and AKD showed no big changes in water absorption times. Those might be come from the finer surface structure of ONP pulp mold which were made of more finer and flexible fibers and more hydrophilic fibers. The results of this study showed the functional properties such as water absorption rate, could be controlled by the application of EFB and the treatments with AKD or PVA, especially in case of the OCC pulp mold.

임상콘텐츠모형 산출물 홍보와 운영을 위한 관리시스템 개발 (A Development of Management System for Publication and Operation of Clinical Contents Model's Outcomes)

  • 윤지현;안선주;이보혜;소혜진
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3398-3405
    • /
    • 2010
  • 본 논문에서는 임상콘텐츠모형(Clinical Contents Model; CCM) 산출물의 효율적인 개발과 배포 및 홍보를 지원하는 관리시스템인 CCM Manager를 개발했다. CCM의 개발과정에서부터 산출물 관리 및 배포까지의 업무 프로세스를 분석하여 관리자 기능과 사용자 기능을 도출했고, CCM 아키텍처를 기반으로 데이터베이스를 설계하였으며 각 사용자들이 쉽게 접근하여 내용을 검색할 수 있도록 하기 위해 웹 기반으로 개발하였다. CCM Manager는 모델 개발자 상호간의 개발된 결과물이 잘 공유될 수 있게 지원하고, 관리자가 수작업으로 산출물을 패키지화하여 배포하지 않아도 일반 사용자에게 CCM의 모델 형식의 산출물을 배포하고 홍보할 수 있도록 하였다. 본 연구는 다양한 검색 기능과 시각화된 모델 브라우징 방식을 제공하고, 관리자 기능까지 포함한다는 측면에서 타 임상정보모델 지원시스템에 비해 우수함을 보인다. 본 연구에서 개발된 CCM Manager는 현재 CCM 개발 프로세스에서 활용되고 있으며, 그 결과를 바탕으로 향후 CCM Manager 활용에 대한 효용성 분석이 이루어질 전망이다.

에틸렌 가스 흡착 기능성 골판지 제조를 위한 기초연구 (Study on the Manufacture of Ethylene Gas Absorbing Corrugated Board)

  • 이지영;김철환;김은혜;박태웅;최재성
    • 펄프종이기술
    • /
    • 제48권2호
    • /
    • pp.20-27
    • /
    • 2016
  • Ethylene gas is a natural hormone that directly affects the freshness of agricultural products, so it is very important for the maintenance of freshness to remove ethylene gas from corrugated board boxes. Many methods for the removal of this and other gases have been reported. In this study, the utilization of an absorbent using activated carbon was adopted for the removal of ethylene gas from a corrugated board box. Activated carbon powders were prepared by grinding in a laboratory and were used to treat the surface and to laminate paperboards with a starch solution. The ethylene gas absorption was evaluated by using a gas chromatography to measure the residual ethylene gas concentration. About 60% of the ethylene gas was absorbed by the activated carbon itself. However, the paperboards that were surface-treated and laminated with starch and activated carbon showed lower than 20% ethylene gas absorption. This was because the starch and smaller particles of activated carbon blocked the surface pores of activated carbon particles. Therefore, either the use of the binders must be minimized for the surface treatment of paperboards, or activated carbon packs can be used as absorbents in corrugated boxes.

원료종류 및 첨가제 처리에 따른 펄프몰드의 수분 저항성 평가 (Evaluation of Water Resistance Properties of Pulp Mold depending on the Types of Raw Materials and the Additives)

  • 성용주;김형민;김동성;이지영
    • 펄프종이기술
    • /
    • 제47권5호
    • /
    • pp.112-119
    • /
    • 2015
  • The pulp mold attract the increasing concern as recyclable, biodegradable, and eco-friendly packaging materials. In order to broaden the applicability of the pulp mold as substitutes of the expanded styrofoam, the properties of various raw materials for the pulp mold were evaluated and the way for improving water resistance properties of the pulp mold were also tested by applying some additives. The higher value in the fines contents and in the water retention value were shown for the TMP (thermomechanical pulp), which resulted in the bulkier pulp mold with the higher moisture absorption property. In case of water resistance properties, the pulp mold made of white ledger stock showed the higher value in water contact angle and very slow water absorption rate. The addition of oil palm EFB fiber showed the improvement in the water resistance of the pulp mold made of UBKP. The effects of various additives on the improvement in the water resistance properties of the pulp mold were tested by using AKD, PVAm, epoxy resin. The application of AKD leaded to the higher increase in the water resistance. The results in this study showed the effects of AKD for the pulp mold could be improved and optimized by the application with fixing agent and by the ageing treatment after production.

농산물용 복합 골판지 제조를 위한 부직포 및 신규 접착시스템에 대한 연구 (Development of nonwoven fabric and new adhesive system to manufacture hybrid corrugated board)

  • 이지영;윤희열;오석주;성용주;김병호;임기백;최재성;김선영
    • 펄프종이기술
    • /
    • 제44권3호
    • /
    • pp.49-55
    • /
    • 2012
  • Even though corrugated boards are the most common packaging materials for agricultural products, conventional corrugated boards are not able to maintain the freshness of agricultural products. In order to overcome the limitations of conventional corrugated boards, a new hybrid corrugated board-composed of linerboard, a corrugating medium, and non-woven fabric-was designed to possess antibacterial, high porous and shock-absorbing properties. In this study, we compared the physical properties of non-woven fabric to those of the base papers of conventional corrugated boards and developed a new adhesive system as a first step toward manufacturing the hybrid corrugated board. We found that the non-woven fabric, which had relatively high elongation, was applicable in the corrugated board process, and that the manufacturing conditions must be controlled in order to prevent the break of the non-woven fabric. The mixture of starch and styrene-butadiene (SB) latex showed high adhesive strength, but the addition level of SB latex should not exceed 30% in starch solution.

롤 형상 필름 생산에서 두께평활도 개선을 위한 고정굴곡부 발현 모형 및 개선 모델 (A Model for Detection and Refinement of Fixed Bending Regions for Improving the Degree of Thickness Uniformity in Rolled Film Manufacturing)

  • 배재호
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.21-28
    • /
    • 2015
  • As film products are increasingly used in a wide range of areas, from producing traditional flexible packaging to high-tech electronic products, a higher level of quality is demanded. Most film products are made in the form of rolled finished goods, therefore, various quality issues related to their shape characteristics must be addressed. The thickness of the film products is one of the most common and important critical-to-quality attributes (CTQs). Particularly, the degree of thickness uniformity is more important than other thickness parameters, because it will be potential causes of many secondary thickness-related quality problems, such as wrinkles or faulty windings. To control the degree of thickness uniformity, the fixed bending region is oneof the most important CTQs to manage. Fixed bending regions are special points in the transverse direction of a rolled product with consistent minute variations of the thickness gap. This paper describes the measurement and analysis of thickness uniformity data, which were performed in a real manufacturing field of biaxial oriented polypropylene (BOPP) film. In previous researches, quality function deployment (QFD) or fault tree analysis were used to find the most critical process attributes out to controlthe CTQ of thickness uniformity. Whereas, this paper uses traditional control charts to find the most critical process attributes out in this problem. In addition, the selection of one of the major critical process attributes (CTPs) that is expected to affect the CTQ of thickness uniformity is also described. The selected critical-to-process attributes are the controlled temperatures along the transverse direction. A dramatic improvement in thickness uniformity was observed when the selected CTPs were controlled.

내구시험을 통한 베어링의 열화 특성과 그리스의 화학적 열화 특성 연관성 분석 (Correlation Analysis Between Chemical Degradation Characteristics of Grease and Degradation Characteristics of Bearing Through Durability Test)

  • 강보식;이충성;류경하
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1239-1246
    • /
    • 2022
  • This paper introduces the effect of grease on the degradation characteristics of bearings used as key components of packaging equipment and automation systems. Bearings parts are installed to fix and support the rotating body of the system, and performance degradation of the bearings has a great effect on the life of the system too. When bearings are used in various devices and systems, the grease is applied to reduce friction and improve fatigue life. Determining the type of lubricant (grease) is important because it has a great influence on the operating environment and lifespan and ensures long lifespan of systems and facilities. However, studies that simultaneously compared and analyzed the change in mechanical degradation characteristics and the comparison of chemical degradation characteristics according to grease types under actual operating conditions are insufficient. In this paper, three types of small harmonic drive, high-load reducer, and low-load reducer grease used in power transmission joint modules are experimentally selected and finally injected into ball bearings with a load (19,500N) to improve bearing durability. Degradation characteristics were tested by attaching to test equipment. At this time, after the durability test under the same load conditions, the mechanical degradation characteristics, that is temperature, vibration according to the three greases types. In addition, the chemical degradation characteristics of the corresponding grease was compared to present the results of mutual correlation analysis.

Modern Paper Quality Control

  • Olavi Komppa
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2000년도 제26회 펄프종이기술 국제세미나
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Effects of Fiber Characteristics on the Greaseproofing Property of Paper

  • Perng, Yuan-Shing;Wang, Eugenei-Chen;Kuo, Lan-Sheng;Chen, Yu-Chun
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.231-237
    • /
    • 2006
  • Grease barrier food containers are commonly used for packaging of fast food, cooked food, and food in general. Greaseproofing is also used for certificate paper and label paper etc. Different pulp raw materials, due to their different fiber morphology and chemical compositions, produce papers of varying characteristics. We used optical photomicroscopy and fiber analysis data to evaluate fiber morphology and traits under various beating conditions in order to understand which pulp raw materials produced superior greaseproofing property when a fluorinated greaseproofing agent was added internally. The experiment studied 9 species of pulps, including 2 softwood (northern pine and radiata pine) bleached kraft pulps which were beaten to 550 and 350 mL CSF, respectively; 3 hardwoods (eucalypts, acacia, mixed Indonesian hardwoods) bleached kraft pulps which were beaten to 450 and 250 mL CSF, respectively; and nonwood fibers of reed, bagasse, and abaca. A fluorinated greaseproofing chemical at 0.12% dosage with respect to dry pulp was added to each pulp preparation and formed handsheets. A total of 67 sets of handsheets were prepared, and their basis weights, thickness, bulks, opacities, wet opacities, air resistance, water absorption and degrees of greaseproofing were measured for an overall evaluation of pulp and freeness on greaseproofing papers. The experimental fiber length, coarseness and distribution characteristics and the greaseproofing results suggest that softwood pulps (radiate pine > northern pine) were superior to hardwood pulps (eucalypts > acacia > mixed Indonesian hardwoods). The unbeaten pulps gave papers with high porosities and nearly devoid of greaseproofing property. Greaseproofing is proportional to air resistance. Among the nonwood fibers, bagasse had the best greaseproofing property, followed by reed and abaca was the poorest. With regards to waterproofing property, hardwood pulps (mixed Indonesian hardwoods > acacia > eucalypts) were better than softwood pulps (northern pine > radiate pine). Among the Nonwood fibers, reed had the highest waterproofing property, and it was followed by abaca, while bagasse had the poorest waterproofing characteristic. In summary, bleached kraft northern pine, eucalypts and reed pulps were best suited for making greaseproofing papers, Freeness of the pulps should be kept at $200{\sim}280mL$ CSF for optimal performance.

  • PDF