• Title/Summary/Keyword: Paper mill

Search Result 579, Processing Time 0.032 seconds

Utilization of Paper Sludges for Developing Bed Soils and Seedling Pots (I) - Physico-chemical analysis of paper sludges - (상토 및 육묘 포트의 개발을 위한 제지 슬러지의 이용 (제1보) - 제지 슬러지의 물리.화학적 분석 -)

  • Kim, Chul-Hwan;Kim, Gyeong-Yun;Sin, Tae-Gi;Jung, Ho-Gyeong;Lee, Young-Min;Song, Dae-Bin;Huh, Moo-Ryong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.61-67
    • /
    • 2007
  • Paper sludges collected from three different paper mills were physico-chemically analyzed in order to use them as raw materials for making bed soils and seedling pots. The sludge from a fine paper mill contained lots of inorganic pigment particles used for coating, as those from a newsprint mill and a tissue mill had not. It was clearly through XRD analysis confirmed that all sludges included calcium carbonate. The paper sludge from the tissue mill contained the greatest amount of particles, which would contribute to water absorption and nutrient storage. The sludge from the fine paper mill had the highest density due to many inorganic elements. While the ash content and the total nitrogen content were the highest in the sludge from the fine paper mill, the C/N ratio was the lowest in the fine paper mill sludge. All sludges seemed to have insufficient contents of potassium. The sludges from the newsprint mill and the tissue mill showed more silicon contents than that from the fine paper mill. It was concluded that the sludge from the fine paper mill would be able to be the most efficient raw materials for making bed soils and seedling pots and the other two sludges would be more efficient for intensive culture for crops such as rice and grain with additional supplement of nitrogen and other nutrients.

제지산업의 지속가능한 처리공정을 위한 제지슬러지 재활용 기술

  • Im, Mi-Hui;Lee, Jong-Gyu;Nam, Seong-Yeong;An, Ji-Hwan
    • Ceramist
    • /
    • v.14 no.2
    • /
    • pp.7-14
    • /
    • 2011
  • This paper has investigated physicochemical properties and conventional and environmental-friendly treatment methods of paper mill sludge to emphasize the importance and necessity of the sludge recycling. The paper mill sludge generally shows high contents of calcium and water, and is mostly discharged by landfill after incineration process rather than being recycled due to technical or economical problems. In recent years, however, several possible methods for recycling the paper mill sludge have been suggested for its sustainable process as follows; compost, raw material for the construction and paper industry, new energy source for reducing fossil fuel use and raw material of activated carbon for treating paper mill wastewater. Thus the authors suggest that practical recycling technologies of the paper mill sludge must be developed for substantiality in the paper industry through comprehending physicochemical compositions and generation status of the sludge and actively performing various related studies. Furthermore, this investigation could be used as preliminary information for the study on recycled paper development using paper mill sludge incineration ash.

  • PDF

Hydrolysis of Paper Mill Sludge Using an Improved Enzyme System

  • Lin Jianqiang;Lee, Sang-Mok;Koo, Yoon-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.362-368
    • /
    • 2001
  • The effects of water soluble materials in paper mill sludge on cellulase and $\beta$-glucosidase activities were studied while the optimization of enzyme system for hydrolysis of the paper mill sludge for production of glucose was made. Water soluble materials in the paper mill sludge showed stimulatory effect on carboxymethyl cellulose (CMC) activity, inhibitory effect on filter paper (FP) activity, and no effect on avicelase and $\beta$-glucosidase activities. CMC and ${\beta}$-glucosidase activities at 5 and 10, 5 or 10 and 10, and 10 and 10 U/ml were optimal for hydrolysis of 5, 10, and 20% of the paper mill sludge, respectively.

  • PDF

Studies on Environmental Impact of Pulp and Addtives in Liner Papermaking

  • Seo, Jin-Ho;Kim, Hyoung-Jin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.441-444
    • /
    • 2006
  • A lot of water is using in the paper mill for dilution, washing, sealing, and other process operation. As the regulation of water environment has been more tightened than ever before, water management in the paper mill becomes the most important task. Topics on reducing fresh water and increasing recycling water have been studied. Further, an interest in zero-effluent system has been increased. The pH of waste water in paper mill is usually weak acidic or neutral. The waste water in the paper mill includes water insoluble organic materials that are not easy to be dissolved in the water, inorganic materials that never react with water and chemical additives that are used to recycled fiber. This study investigated on the effect of various materials used in paper mill on COD. This data could be used to control the environmental load in paper mill. COD caused by raw materials and NBDCOD (Non Bio Degradable COD) after the activated sludge process are investigated in this study. Results obtained in this study can be used in a simulation program designed to control environmental load in the paper mill.

  • PDF

Assessment of the Adsorption Capacity of Cadmium and Arsenic onto Paper Mill Sludge Using Batch Experiment (회분식 실험을 통한 제지슬러지의 카드뮴 및 비소 흡착능 평가)

  • Baek, Jongchan;Yeo, Seulki;Park, Junboum;Back, Jonghwan;Song, Youngwoo;Igarashi, T.;Tabelin, C.B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • The purpose of this study is to promote utilization of paper mill sludge as an adsorbent for stabilizing heavy metals in contaminated water by measuring the adsorption capacity of paper mill sludge for cadmium and arsenic. To measure adsorption capacity of paper mill sludge, sorption isotherm experiments were analyzed by Langmuir and Freundlich isotherm models. Also, two methods of chemical modifications were applied to improve the adsorption capacities of paper-mill-sludge: the first method used sodium hydroxide (NaOH), called PMS-1, and the second method used the NaOH and tartaric acid ($C_4H_6O_6$) together, called PMS-2. For Cd adsorption, PMS-1 presented the increase of reactivity while PMS-2 presented the decline of reactivity compared to that of untreated paper-mill-sludge. In case of As adsorption, both PMS-1 and PMS-2 showed the decrease of adsorption capacities. This is because zeta-potential of paper mill sludge was changed to more negative values during chemical modification process due to the hydroxyl group in NaOH and the carboxyl group in $C_4H_6O_6$, respectively. Therefore, we may conclude that the chemical treatment process increases adsorption capacity of paper mill sludge for cation heavy metals such as Cd but not for As.

Evaluation of Toxicity of Paper Mill Sludge to Honey Bees and Analysis of Volatile Organic Compounds

  • Bisrat, Daniel;Ulziibayar, Delgermaa;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.4
    • /
    • pp.315-323
    • /
    • 2019
  • Large amounts of sludge produced by paper mill industries represent one of the most serious environmental problems in the world. Recently, beekeepers living in the neighborhood of the paper mill in Hwasan County, Youngcheon city, GB, Korea, became alarmed that honey bee colonies were dying off suddenly across the neighborhood. A preliminary study was conducted to evaluate the toxicity (oral, fumigation, repellent) of recycled solid paper mill sludge (SPMS) and leachate paper mill sludge (LPMS) to honey bee workers under laboratory conditions, and to analyze the volatile organic compounds(VOC). The SPMS and LPMS were separately subjected to a liquid-liquid extraction (LLE) at three temperatures to extract VOC(highest VOC yields: 1.52% SPMS and 0.34% LPMS). A total of 70 chemicals were detected in the VOC of paper mill sludges, of which 49 and 21 volatile organic compounds from SPMS and LPMS, respectively. The SPMS was dominated by high degree presence of stanols (saturated sterols), such as cholestanol, cholestan-3-ol and also saturated hydrocarbons. However, LPMS was characterized by the absence of sterols. Both SPMS and LPMS showed an influence on the olfactory behavior of honey bee on Y-tube assay, with repulsion rates of 72 and 68%, respectively. Both SPMS and LPMS at concentration of 100mg/mL caused higher honey bee oral mortality than the untreated controls at 48, 72, 96 and 120 hours after treatment(highest oral mortality at 120 hr: 85.74%(SPMS); 93.51 % (LPMS)). A similar pattern was observed when honey bees were tested to fumigant toxicity. Both SPMS and LPMS caused significant higher mortality than the untreated control 24 hour after the exposure (highest fumigation mortality at 120 hr: 69.4% (SPMS); 56.8% (LPMS)). These preliminary results indicated that paper mill sludge could be partly responsible for sudden death and disappearance of honey bees, especially in hot humid summer days. With climate change, the risk of environmental chemical exposure to honey bee would pose greater attention.

Effect on the Crack Resistance of Fiber Reinforced Concrete using Incinerated Paper Mill Sludge Ash (제지(製紙) 슬러지 소각재(燒却滓)를 활용(活用)한 섬유보강(纖維補强)콘크리트의 균열(龜裂) 억제(抑制) 효과(效果))

  • Kim, Nam-Wook
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.10-20
    • /
    • 2008
  • This study was intended to use an incinerated paper mill sludge ash as cement alternatives in order to derive a method of utilizing the incinerated paper mill sludge ash of low utilization rate in large quantities. Also, the utilization possibility of incinerated paper mill sludge ash as the cement alternative was examined by mixing a polypropylene fiber and cellulose fiber and by considering its control effect for shrinkage cracks caused by an increase of absorption rate and hydration heat, as a weakness shown at the alternation of incinerated paper mill sludge ash.

PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill (PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.

Useful and Effective Diagnosis and Evaluation Tools for Eenvironmental Change in Increased Mill Water System Closure

  • Linda R. Robertson;Lee, Byung-Tae;Kim, Tae-Joon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.5
    • /
    • pp.1-11
    • /
    • 2001
  • In the past, abundant and clean water was available for paper mills'use. However, the growth of population and industry made water less available nowadays. Also, environmental regulation limits wastewater discharge, which affects mill operation cost. Therefore, paper mills are under pressure to use more recycled water and mill system closure. As a result, chemical and physical parameters of water are changing and new environment if being created for microorganisms in paper mill system as well. The more soluble or suspended organic materials are increased as more water is recycled and less or scarce dissolved oxygen is available, depending on the degree of recycled water usage. Microorganism flora ill paper mill system will be a1so shifted according to the environmental change of mill system. Anaerobic bacteria, including sulfate reducing bacteria (SRB), will be dominant in the system as very low or almost no oxygen available in the system. Nevertheless, it is common in domestic paper mills that employ the same and old biocides as a means of microbial control, and microbiological control is often less recognized or even neglected. The right biocide selection for increased reductive environment of mills is critical for operation and estimated loss from paper quality defects such as sheet break, holes due to microbiological cause is tremendous compared to the microbiological control cost. It is imperative to investigate and diagnosis the environmental change of mills for right control of cumbersome microorganisms. Several useful diagnosis tools, including new technology employing OFM(Optical Fouling Monitor) in situ, are illustrated.

  • PDF

A Rational Operation Scheduling Using Genetic Algorithms on Cogeneration System for Paper Mill (제지공장용 열병합발전시스템에서 유전알고리즘을 이용한 합리적 운전계획 수립에 관한 연구)

  • Choi, Kwang-Beom;Lee, Jong-Beom;Jeong, Ji-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.291-293
    • /
    • 1999
  • This paper proposed the optimal operational scheduling of cogeneration system for paper mill connected with several auxiliary devices. Auxiliary devices that include auxiliary boilers, waste heat boilers and sludge incinerators operate with multi-cogeneration systems. Especially environment element was considered in objective function to solve the environment problem. And GAs(Genetic Algorithms) was applied to optimize and to analyse nonlinear operational property of cogeneration system of paper mill connected with several auxiliary devices. C-language was used to GAs computation. Electricity can be purchased through power system from utility. The proposed operational strategy on cogeneration system for paper mill to increase energy efficiency can be applied to the similar cogeneration system of industrial field.

  • PDF