• Title/Summary/Keyword: Paper fly ash(PFA)

Search Result 2, Processing Time 0.018 seconds

Physical Characteristics of Soft Clay Improved by PFA Stabilization Agent (제지회계 지반개량재로 처리된 연약점토의 물리적 특성)

  • 김광빈;이용안;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.561-568
    • /
    • 2002
  • PFA(Paper Fly Ash) are reclaimed mainly or used in cement industry field as mixture agent in terms of materials recycling. Recently, research for recycling PFA as embankment materials or soil stabilization agent are undergoing in geotechnical engineering field. In this study, physical characteristics of PFA stabilization agent-soil admixtures are examined in change of water content, void ratio, consistency, grain distribution, specific gravity and density. Futhermore, the physical characteristics are compared with unconfined strength as engineering characteristics. Test results showed that unconfined strength and density are increased with increasing of PFA stabilization agent mixed ratio. On the other hand, specific gravity, void ratio and water content are decreased with increasing of PFA stabilization agent mixed ratio. It would be concluded that natural high water content ratio weak soil could be highly improved engineering and physical characteristics with PFA stabilization agent

  • PDF

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.