• Title/Summary/Keyword: Papaya ringspot virus (PRSV)

Search Result 7, Processing Time 0.023 seconds

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Papaya Ringspot Virus Coat Protein Gene for Antigen Presentation in Escherichia coli

  • Chatchen, Supawat;Juricek, Mila;Rueda, Paloma;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

Occurrence of Papaya ringspot virus Infecting Cucurbit Crops in Korea (박과작물에 발생하는 파파야원형반점바이러스의 발생 보고)

  • Jin, Tae-Seong;Kim, Sang-Mok;Ko, Sug-Ju;Lee, Su-Heon;Choi, Hong-Soo;Park, Jin-Woo;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.298-308
    • /
    • 2009
  • A flexuous rod-shaped virus was isolated from Cucurbita pepo leaves showing as green mosaic and puckering symptoms at Anseong, Korea. Based on the biological analysis, electron microscopy, and reverse transcription-polymerase chain reaction (RT-PCR), the virus isolate was identified as Papaya ringspot virus type watermelon (PRSV-W). From biological analysis, the host range of PRSV-W was limited to the families Cucurbitaceae and Chenopodiaceae. Most susceptible cucurbit species, such as Cucumis lanatus, Cucumis sativus, Cucurbita pepo, and Citrullus lanatus, showed symptoms of green mosaic, malformation, puckering, and narrow laminae by infection with PRSV-W. The local lesion were showed on the inoculated leaves of both Chenopodium amaranticolor and C. quinoa. Field survey of PRSV, Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV), three major viruses infecting cucurbit, was done during 2001 to 2003 on 173 commercial cucurbit cultivating fields distributed over the three regions of Gyeonggi, Gyeongbuk and Jeonnam Provinces where cucurbits are grown in different environmental conditions and cropping patterns. Typical viral symptoms were observed from 107 cultivating fields, and all three kinds of potyviruses were detected from 206 samples out of the 235 samples using RT-PCR. Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV) are the most widely distributed viruses in outdoor and retarding-culture fields, at an infection rating of 48 and 33 percents, respectively. PRSV was detected from 12 percent of 235 samples. The nucleotide and amino acid sequences of coat proteins (CP) of eight PRSV isolates, collected from several areas including Anseong, were determined and sequenced heterogeneity among the isolates was performed. The CP gene of PRSV showed 88.6~97.3 percent homology in nucleotide sequences and 95.1~99.3 percent homology in amino acid sequences with other PRSV isolates worldwide. The phylogenetic analysis indicated that the Korean PRSV isolates belong to the southern-east Asian cluster.

Identification of Papaya Ringspot Potyvirus type W infecting squash in Korea

  • T. S. Jin;Lee, S. H.;Park, J. W.;Park, H.S.;Kim, M.;D. B. Shin;J. U. Cheon;B. J. Cha
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.141.2-142
    • /
    • 2003
  • A flexuous rod-shaped virus was isolated from Cucurbita pepo leaves showing green mosaic and puckering symptoms at Anseong, Korea. Based on the biological tests, electron microscopy, and reverse transcription-polymerase chain reaction (RT-PCR), the isolate was identified as Papaya ringspot virus type Watermelon (PRSV-W). In the biological test, host range of PRSV-W was limited in the families Cucurbitaceae and Chenopodiaceae. Most susceptible cucurbit species, such as Cucurmis lanatus, Cucurmis sativus, Cucurbita pepo, and Citrullus lanatus, responded to mechanical inoculation by PRSV-W that induce green mosaic, malformation, puckering, and narrow laminae. The local lesion symptoms were produced on the inoculated leaves of Chenopodium maranticolor and C. quinoa PRSV specific primers which amplifies the part of the coat protein (CP) genes, generated a 648 bp product from 6 isolates of PRSV-W, but no amplification had been detected in other viruses including CMV, CGMMV, KGMMV, ZYMV and WMV. In electron microscopy, PRSV particles were flexuous, approximately 780 nm in length and 12 nm in width. PRSV-W is one of the worldwide viruses which has the great economic importance in cucumber, melon, squash, watermelon, and other cultivated cucurbits with ZYMV and WMV. This is the first report of PRSV-W on cucurbits in Korea.

  • PDF

Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment (GM 파파야 개발 및 생물안전성 평가 연구 동향)

  • Kim, Ho Bang;Lee, Yi;Kim, Chang-Gi
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • Papaya (Carica papaya L.) is one of the crops widely planted in tropical and subtropical areas. The papaya fruit has low calories and are plentiful in vitamins A and C and in minerals. A major problem in papaya production is a plant disease caused by the papaya ringspot virus (PRSV). The first PRSV-resistant GM papaya expressing a PRSV coat protein gene was developed by USA scientists in 1992. The first commercial GM papaya cultivars derived from the event was approved by the US government in 1997. Development of transgenic papayas has been focused on vaccine production and limited agricultural traits, including insect and pathogen resistance, long shelf life, and aluminum and herbicide tolerance. Approximately 17 countries, including the USA and China, produced transgenic papayas and/or commercialized them, which provoked studies on biosafety assessment and development of GM-detection technologies. For the biosafety assessment of potential effects on human health, effects of long-term feeding to model animals have been studied in terms of toxicity and allergenicity. Studies on environmental safety assessment include influence on soil-microbial biodiversity and transfer to soil bacteria of GM selection markers. Many countries, such as Korea, the European Union, and Japan, that have strict regulations for GM crops have serious concerns about unintended introduction of GM cultivars and food commodities using unauthorized GM crops. Transgene- and/or GM event-specific molecular markers and technologies for genomics-based detection of unauthorized GM papaya have been developed and have resulted in the robust detection of GM papayas.

Virus Diseases Occurred on Watermelon in Jeonnam Province (전남지역의 수박에 발생하는 바이러스 병 발생 실태)

  • Ko, Sug-Ju;Lee, Yong-Hwan;Cha, Kwang-Hong;Park, Jin-Woo;Lee, Su-Heon;Yang, Kwang-Yeol
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.39-43
    • /
    • 2004
  • Recent occurrence of virus diseases on watermelon plants cultivated in Jeonnam province was investigated from 1998 to 2002. While virus diseases were severely occurred on watermelon cultivated in green house in 1998, those of open field were severer than in green house since 2000. When 128 samples collected from different fields were examined by electron microscopy, 87.8% of the samples contained rod-shaped or filamentous virus particles. RT-PCR analysis of the samples revealed that Cucumber green mottle mosaic virus (CGMMV) was only detected from collected samples at May. Watermelon mosaic virus (WMV) was most frequently found and CGMMV and Zucchini yellow mosaic virus (ZYMV) were slightly at June and July. However Cucumber mosaic virus (CMV) and Papaya ringspot virus (PRSV) have not been detected.