• Title/Summary/Keyword: Panicle

Search Result 759, Processing Time 0.045 seconds

'Jungmo1033', a Derivative of High-quality Native Rice Variety 'Jagwangdo' (재래벼 '자광도' 유래 고품질 벼 '중모1033')

  • Jeong, Eung-Gi;Won, Yong-Jae;Ahn, Eok-Keun;Hyun, Ung-Jo;Cho, Young-Chan;Suh, Jung-Pil;Oh, Myoung-Kyu;Lee, Jeom-Ho;Hong, Ha-Cheol;Lee, Chung-Kuen;Jeon, Yong-Hee;Jeung, Ji-Ung;Chung, Hi-Che;Kim, Bo-Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.51 no.1
    • /
    • pp.34-40
    • /
    • 2019
  • 'Jungmo1033', a japonica rice variety, was developed by the rice breeding team at the National Institute of Crop Science (NICS) in 1992. It is derived from a cross between a native variety 'Jagwangdo', which has translucent milled rice and medium maturity; and 'Hwayeong', which is an elite line with bacterial blight resistance and mid-late maturity. The heading date of 'Jungmo1033' was August 10 in the middle plain area of Korea, which was two days later than that of 'Hwaseong'. 'Jungmo1033' has a culm length of 79 cm, which was 5 cm shorter than that of 'Hwaseong', and 105 spikelets per panicle. 'Jungmo1033' showed resistance to bacterial blight (K1, K2, and K3 races) and stripe virus, but susceptibility to the K3a race of bacterial blight, dwarf and black-streaked dwarf viruses, and planthoppers. The milled rice of this variety exhibited translucency and a medium short grain shape. It had an excellent appearance and lower amylose content (19.1%) than that of 'Hwaseong'. The characteristics related to grain milling were better than those of 'Hwaseong', especially head rice milling recovery ratio and head rice ratio (94.8%). 'Jungmo1033' showed a milled rice productivity of 5.38 MT/ha at 11 sites under ordinary cultivation conditions. (Registration No. 5723)

Development of Early Maturing Rice Stripe Virus Disease-Resistant 'Haedamssal' through Marker-Assisted Selection (MAS를 이용한 줄무늬잎마름병 저항성 조생종 벼 '해담쌀' 개발)

  • Lee, Jong-Hee;Cho, Jun-Hyeon;Lee, Ji-Yoon;Oh, Seong-Hwan;Kim, Choon-Song;Park, No-Bong;Hwang, Un-Hwa;Song, You-Chun;Park, Dong-Soo;Yeo, Un-Sang
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.448-453
    • /
    • 2019
  • 'Haedamssal' is an early maturing and rice stripe virus disease-resistant cultivar adaptable for early-transplanting cultivation that was developed by the rice breeding team of the Department of Southern Crop, NICS, RDA, in 2014. This cultivar was derived from the cross YR25869 (YR21247-B-B-B-49-1/Sasanishiki BL4//Koshihikari) and YR25868 (Unkwang//YR21247-B-B-B-49-1/Sasanishiki BL4) made in the 2005/2006 winter season and was advanced to the F5 generation by a bulk breeding method using rapid generation advance. To incorporate rice stripe virus resistance, marker-assisted selection on the RSV gene was conducted in 3-way and 6-way cross F1 generation using the tightly linked marker RM6897. From testing in the replicated yield trial in 2011, a promising line YR26258-B-B-B-33-3 was selected and it was designated as 'Milyang276'. A local adaptability test of 'Milyang276' was performed at three locations from 2012 to 2014 and it was named as 'Haedamssal', which was a good eating quality variety. The culm length was 67 cm in yield trials, which was 4 cm shorter than 'Jopyeong'. The number of spikelets per panicle was lower than 'Jopyeong', whereas the number of tillers per hill was higher. This variety was resistant to RSV disease, bacterial blight, and leaf blast disease. The milled rice yield of 'Haedamssal' was 5.48 MT per ha at the early transplanting in the local adaptability test. 'Haedamssal' is well adapted to early transplanting cultivation in the southern plain area (Registration No. 6811).

A Wide Region of Tropical Asia Adaptable Japonica Rice 'Asemi' (아시아 광지역 적응성 자포니카 벼 '아세미')

  • Jeong, Eung-Gi;kang, Kyeong-Ho;Hong, Ha-Cheol;Cho, Young-Chan;Jung, O-Young;Jeon, Yong-Hee;Chang, Jae-Ki;Lee, Jeom-Ho;Won, Yong-Jae;Yang, Un-Ho;Jung, Kuk-Hyun;Yeo, Un-Sang;Kim, Bo-Kyeong
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.1
    • /
    • pp.76-81
    • /
    • 2019
  • 'Asemi' is a rice variety derived from a cross between 'Jinmibyeo' which has translucent milled rice and medium maturity and 'Cheolwon46', an elite line with high yield and early maturity by the rice breeding team at NICS, RDA in 2013. The heading date of 'Asemi' is August 1, six days earlier than the check variety 'Hwaseong'. It has 82 cm culm length and 109 spikelets per panicle. 'Asemi' is resistant to blast disease, stripe virus and tungro virus, but susceptible to other viruses and planthoppers. The milled rice of this variety exhibits translucent, clear non-glutinous endosperm and short grain shape. It has protein content (6.7%) higher than 'Hwaseong', and amylose content (19.5%) similar to 'Hwaseong'. The milled rice recovery rate of 'Asemi' is similar to that of 'Hwaseong'. However, the head rice rate of 'Asemi' is higher than that of 'Hwaseong'. Milled rice yield of 'Asemi' is 5.23 MT/ha in ordinary cultivation. ' Asemi' could be adaptable to the wide region of tropical Asia (Registration No. 5639).

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources (질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향)

  • Tae-Heon Kim;Suk-Man Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (-0.44) and TGW (-0.44), and TGW displayed a negative correlation with PRG (-0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.

Physiological studies on the sudden wilting of JAPONICA/INDICA crossed rice varieties in Korea -I. The effects of plant nutritional status on the occurrence of sudden wilting (일(日). 인원연교잡(印遠緣交雜) 수도품종(水稻品種)의 급성위조증상(急性萎凋症狀) 발생(發生)에 관(關)한 영양생리학적(營養生理學的) 연구(硏究) -I. 수도(水稻)의 영양상태(營養狀態)가 급성위조증상(急性萎凋症狀) 발생(發生)에 미치는 영향(影響))

  • Kim, Yoo-Seob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.316-338
    • /
    • 1988
  • To identify the physiological phenomena on the sudden wilting of japonica/indica crossed varieties, Pot experiment was carried out under the heavy N application with various levels of potassium in Japan. The results obtained are as follows. 1. Sudden wilting was occurred in both varieties used, Yushin and Milyang 23. The former showed a higher degree than the latter. 2. Sudden wilting was occurred into two types, one at early ripening stage and the other at late ripening stage. The former type was found in the field with low potassium supply and the latter was seemed to be related to varietal wilting tolerence. 3. By the investigation of concerning the effective tillering rate and the change of dry weight of each organ at the heading stage, it was inferred that the growth status from young panicle formation stage to heading stage were related to sudden wilting tolerence. 4. Manganese content at heading stage, ratio of Fe/Mn and Fe. Fe/Mn in stern at late ripening stage and $K_2$ O/N ratio of stem at harvesting stage were recognized as the specific factors in connection with sudden wilting. Mn content in the sudden wilting rice plant was already in creased remarkably at heading stage. In relation to root age and absoption characteristics of Mn, the senility of root before heading stage was inferred as the cause of increase the value of Fe/Mn or Fe. Fe/Mn. 5. The $K_2$ O/N ratio of culm at harvesting stage was lower in upper node than lower node in relation to sudden wilting. And it was well accordance with the fact that the symptoms of sudden wilting proceeded from upper leaf to lower leaf. These phenomenon was different from the usual one that the effect of potassium deficiency was more remarkable in lower node than upper node. 6. All varieties which have a condition of potassium deficiency have a high degree of nitrogen content of leaves at heading stage and the $K_2$ O/N ratio of each organ was low, Especialy, $K_2$ O/N ratio is much lower in sheath and culm than leaves.

  • PDF

A High Quality Rice Variety "Cheongcheongjinmi" Adaptable to Low Nitrogen Fertilizer Application (질소 소비료적성 고품질 벼 신품종 "청청진미")

  • Cho, Young-Chan;Oh, Myung-Kyu;Choi, Im-Soo;Kim, Yeon-Gyu;Kim, Myeong-Ki;Hwang, Hung-Goo;Hong, Ha-Cheol;Jeong, O-Young;Choi, In-Bae;Choi, Yong-Hwan;Jeon, Yong-Hee;Lee, Jeom-Ho;Lee, Jeong-Heui;Lee, Jeong-Il;Shin, Young-Seop;Kim, Jeong-Ju;Kim, Ki-Jong;Baek, Man-Kee;Roh, Jae-Hwan
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.654-659
    • /
    • 2009
  • "Cheongcheongjinmi" is a new japonica rice variety developed from a cross between Iri401 and Ilpumbyeo by the rice breeding team of National Institute of Crop Science, RDA. This variety is suitable for ordinary season culture of low level nitrogen application. Heading date of "Cheongcheongjinmi" is August 17, 4 days later than that of Sobibyeo in plain areas. It has culm length of 82 cm, and relatively semi-erect pubescent leaf blade and slightly tough culm tolerant to lodging with good canopy architecture. This variety has 13 tillers per hill, 126 spikelets per panicle and 90.2% of ripened grains. "Cheongcheongjinmi" showed lower spikelet fertility than Sobibyeo when exposed to cold stress. This variety showed slower leaf senescence and lower viviparous germination compared to Sobibyeo during the ripening stage. "Cheongcheongjinmi" is susceptible to blast disease, bacterial blight, virus diseases and planthoppers. The dried plant weight, total nitrogen and RuBisCO activity of "Cheongcheongjinmi" were higher than those of Sobibyeo in low level nitrogen application. The milled rice of "Cheongcheongjinmi" exhibits translucent, clear non-glutinous endosperm and medium short grain. It shows lower protein and amylose contents than those of Sobibyeo, and better palatability of cooked rice compared to Hwaseongbyeo. The milled rice yield of this cultivar is about 5.10 MT/ha at low level nitrogen application of ordinary season culture in local adaptability test for three years. Especially, "Cheongcheongjinmi" has better milling properties such as the percentage of whole grain in milled rice and milling recovery of whole grain, respectively than those of Sobibyeo. "Cheongcheongjinmi" would be adaptable to middle plain areas and middle-western coastal areas of Korea.

Residual Effects of Basic Oxygen Furnace Slag as Soil Conditioner in the Rice Paddy Field (논토양 벼 재배에서 제강슬래그의 토양개량제로서의 시용효과)

  • Lim, June-Taeg;Kim, Young-Sin;Park, Jn-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.205-211
    • /
    • 2000
  • This study was conducted to evaluate the residual effects of basic oxygen furnace (BOF) slag applied in rice paddy fields as soil conditioner one year before. The experimental fields of Lim et al. (2000) located in Youjung and Nampyung were used for this purpose. Both variety (Oryza sativa L. cv. Dongjinbyeo) and cultural practices were the same as those in Lim et al. (2000). Soil chemical properties, plant height, number of tillers per plant, yield and yield components were observed. The temporal variation of treatment mean value in soil chemical properties appeared to be similar trends in both Youjung and Nampyung experimental fields. Soil pH and Ca content were still significantly higher than those in control treatment up to July of the second season, but decreased progressively as time passed. However, the effects lasted longer as slag rate became higher. BOF slag seems to have residual effects as a soil conditioner or Ca fertilizer in soil for two years. BOF slag rate of $4Mg\;ha^{-1}$ raised soil pH almost the same as lime rate of $2Mg\;ha^{-1}$. Content of $SiO_2$ in soil applied slag appeared to be higher compared with control. Fe and Mg content in soil with slag treatment was significantly higher than that of control in 1997, but it was almost the same level as that of control in 1998. In YouJung experimental field, rough rice yield of slag teatment became higher as slage rate incresed. Slag rate of $12Mg\;ha^{-1}$ showed the highest rough rice yield of $5,400kg\;ha^{-1}$ among treatment, which was 14% higher than that of control with $4,720kg\;ha^{-1}$. Slag rate of $12Mg\;ha^{-1}$ showed relatively higher plant height and higher number of tillers at the early growth stage compared with other treatments. In NamPyung experimental field, rough rice yield was the highest at the plot of lime rate $2Mg\;ha^{-1}$ and became higher as slag rate increased. There were no significant differences in rough rice yield between lime treatment and slag treatments. Slag rate of $12Mg\;ha^{-1}$ showed the highest rough rice yield of $7,170kg\;ha^{-1}$ among slag treatment, which was 8% significantly higher than that of control with $6,670kg\;ha^{-1}$. Slag rate of $12Mg\;ha^{-1}$ showed relatively slower growth in plant height at the early growth stage, but superior growth at the later growth stage, and significantly higher number of spiklets per panicle and 1000-grain weight than that of control.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF