• Title/Summary/Keyword: Panel Structures

Search Result 651, Processing Time 0.023 seconds

A mathematical steel panel zone model for flanged cruciform columns

  • Saffari, Hamed;Sarfarazi, Sina;Fakhraddini, Ali
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.851-867
    • /
    • 2016
  • Cruciform sections are an appropriate option for columns of orthogonal moment resisting frames for equal bending strength and stiffness about two main axes and the implementation is easier for continuity plates. These columns consist of two I-shaped sections, so that one of them is cut out in middle and two generated T-shaped sections be welded into I-shaped profile. Furthermore, in steel moment frames, unbalance moment at the beam-column connection leads to shear deformation in panel zone. Most of the obtained relations for panel zone strength derived from experimental and analytical results are on I-shaped columns with almost thin flanges. In this paper, a parametric study has been carried out using Finite Element Method (FEM) with effective parameters at the panel zone behavior. These parameters consist of column flange thickness, column web thickness, and thickness of continuity plates. Additionally, a mathematical model has been suggested to determine strength of cruciform column panel zone and has been shown its accuracy and efficiency.

Model Updating of an Equipment Panel with Embedded Heat Pipes (히트 파이프가 내장된 통신위성용 탑재체 패널의 해석모델 개선)

  • 양군호;최성봉;김흥배;문상무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.114-121
    • /
    • 1998
  • This paper presents the model updating of an equipment panel by using modal test and sensitivity analysis. The equipment panel is one of the major structures of communication satellite, on which broadcasting and communication equipments are mounted. For high rigidity and light weight, the panel was designed as an aluminum honeycomb sandwich panel. In addition, heat pipes were embedded in the panel for thermal control. It is essential to improve the finite element model of a satellite by using modal test in order to verify the satellite is designed with adequate margin under launch environment. In this paper, Young's modulus of aluminum facesheet was selected as a modified parameter by sensitivity analysis. The effect of rotational springs of boundary points was also considered.

  • PDF

Model Updating of an Equipment Panel with Embedded Heat Pipes (히트 파이프가 내장된 통신위성용 탑재체 패널의 해석모델 개선)

  • 양군호;최성봉;김홍배;문상무
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.248-257
    • /
    • 1999
  • This paper presents the model updating of an equipment panel by using modal test and sensitivity analysis. The equipment panel is one of the major structures of communication satelite, on which broadcasting and communication equipments are mounted. For high rigidity and light weight, the panel was designed as an aluminum honeycomb sandwich panel. In addition, heat pipes were embedded in the panel for thermal control. It is essential to improve the finite element model of a spacecraft structure by using modal test in order to verify that the satellite is designed and fabricated with adequate margin under launch environment. In this paper, Young's modulus of aluminumfacesheet was selected as a modified parameter in the sensitivity analysis. The effect of boundary conditions on model improvement was also investigated.

  • PDF

Wave Propagation in Swaged Panel (형상 보강 판넬의 파동 전파 특성)

  • 이종화;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.253-256
    • /
    • 1996
  • Stiffened panels are very frequently used for body structures of automobiles, air-crafts, submarines, etc., to suppress the vibration level. Swaging technique is the modification of the configuration of panel itself, and this is prefered to rib-like stiffeners because it does not change the total weight of structure. In this paper, the transmissibility of vibratory power through swage is investigated, where the swage is modeled as an incomplete circular ring, utilizing the well-known transfer matrix method. The power transmission and reflection coefficients of swaged panel are estimated and compared with experimental results.

  • PDF

Characteristics of Local Vibration Modes of the Aluminium Extruded Panels for Rail Road Vehicles (철도 차량용 알미늄 압출재의 국부진동 모드특성)

  • 김석현;장호식;김정헌
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.87-93
    • /
    • 2001
  • Characteristics of the local vibration modes of an aluminium extruded panel are investigated by the finite element analysis and modal testing. Practical methods to increase the damping of the local resonances are proposed. Effects by filling urethan foam in the core cavity and by coating tar on the panel surface are compared by experiments. Modified panel structures to shift the local resonance frequency band are proposed. The results of the study are utilized to predict the severe local resonances in the aluminium extruded panels and prevent their undesirable effect on the sound insulation.

  • PDF

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

DEVELOPMENT OF THERMAL ANALYSIS PROGRAM FOR GEOSTATIONARY SATELLITE PANEL (정지궤도위성 위성체패널 열해석 프로그램 개발)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young;Chae, Jong-Won
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.66-72
    • /
    • 2010
  • The north and south panel of a geostationary satellite are used for radiator panels to reject internal heat and utilize several heat pipe networks to control the temperatures of units and the main structures of satellite within proper ranges. The design of these panels is very important and essential at the conceptual design and preliminary satellite design stage, so several thousands of nodes or more are utilized in order to perform detailed thermal analysis of panel. Generating a large number of panel nodes takes time and is tedious work because the nodes can be easily changed and updated by locations of units and heat pipes. Also the detailed panel model can not be integrated into spacecraft thermal model due to its node size and limitation of commercial satellite thermal analysis program. Thus development of a program was required to generate a detailed panel model, to perform thermal analysis and to make a reduced panel model for the integration to the satellite thermal model. This paper describes the development and the verification of the panel thermal analysis program with its main modules and functions.

Nonlinear Analysis of Precast Large Panel Structures Considering the Inelastic Properties of Horizontal Joints (수평접합부의 비탄성 특성을 고려한 프리캐스트 대형판넬 구조물의 비선형 해석에 관한 연구)

  • 정일영;최완철;송진규;강해관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.45-52
    • /
    • 1995
  • The stability and integrity of precast large panel structures are analyzed with nonlinear mathematical model considering the inelastic properties of horizontal joints. In this research, an analysis for cyclic loading test was carried out by the macro model that idealized the horizontal joints as inelastic-nonlinear spring systems. As a results, the strain hardening ratio of shear slip element was estimated as about 0.05%- 0.2% of initial shear stiffness. And under lateral load, the rocking motion due ti overturning moment was dominant rather than shear slip motion in the behavior of precast structures.

  • PDF

Quantitative Analysis on Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures (P.C. 대형판 구조물의 수평접합부 유효강성에 대한 정량적 분석)

  • 이한선;장극관;신영식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Though stiffnesses of joints in precast concrete(P.C.) large panel structures are known to be generally less than those in monolithic reinforced concrete wall structures, designers have very little information on the quantitative values with regards to these stiffnesses. The aim of this paper is to provide this quantitative information, in particular, on the compressive stiffness of horizontal joints, based on the analytical results derived from several experiments. Also, it is shown that the approach from the contact problem to determine this stiffness gives a value very simlar to those obtained above.